DENG Xiang-yi, FENG Ya-li, LI Hao-ran etc. Synthesis of Carbon Quantum Dots by Biomass Tar[J]. Chinese Journal of Luminescence, 2017,38(8): 1015-1020 DOI: 10.3788/fgxb20173808.1015.
the fluorescent carbon quantum dots were prepared using pyrolysis by-products tar as carbon precursor. The carbon dots prepared by reverse microemulsion method are regular spherical structures with uniform particle size of 4.3 nm and the crystal lattice spacing is 0.25 nm
corresponding to the (100) plane of graphite carbon. The carbon quantum dots prepared by P
2
O
5
carbonization method are honeycomb-like with particle size of 6.8 nm and the crystal lattice spacing is 0.33 nm
corresponding to the (002) plane of graphite carbon. The yield of carbon quantum dots is 85.3% and 24.3%
respectively.
关键词
Keywords
references
王莉, 吕婷, 阮枫萍, 等. 水热法制备的荧光碳量子点[J]. 发光学报, 2014, 35(6):706-709. WANG L, LYU T, RUAN F P, et al.. Synthesis of photoluminescent carbon nanoparticles by hydrothermal method[J]. Chin. J. Lumin., 2014, 35(6):706-709. (in Chinese)
YANG S T, WANG X, WANG H F, et al.. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J. Phys. Chem. C, 2009, 113(42):18110-18114.
LUO P G, SAHU S, YANG S T, et al.. Carbon "quantum" dots for optical bioimaging[J]. J. Mater. Chem. B, 2013, 1(16):2116-2127.
DA SILVA J C G E, GONALVES H M R. Analytical and bioanalytical applications of carbon dots[J]. TrAC Trends. Anal. Chem., 2011, 30(8):1327-1336.
WANG F, XIE Z, ZHANG H, et al.. Highly luminescent organosilane-functionalized carbon dots[J]. Adv. Funct. Mater., 2011, 21(6):1027-1031.
FANG Y X, GUO S J, LI D, et al.. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles[J]. ACS Nano, 2012, 6(1):400-409.
JAISWAL J K, GOLDMAN E R, MATTOUSSI H, et al.. Use of quantum dots for live cell imaging[J]. Nat. Methods, 2004, 1(1):73-78.
RAY S C, SAHA A, JANA N R, et al.. Fluorescent carbon nanoparticles:synthesis, characterization, and bioimaging application[J]. J. Phys. Chem. C, 2009, 113(43):18546-18551.
KWON W, RHEE S W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles[J]. Chem. Commun., 2012, 48(43):5256-5258.
LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew. Chem. Int. Ed., 2007, 46(34):6473-6475.
TIAN L, GHOSH D, CHEN W, et al.. Nanosized carbon particles from natural gas soot[J]. Chem. Mater., 2009, 21(13):2803-2809.
娄庆, 曲松楠. 基于超级碳点的水致荧光"纳米炸弹"[J]. 中国光学, 2015, 8(1):91-98 LOU Q, QU S N. Water triggered luminescent nano-bombs based on supra-carbon-nanodots[J]. Chin. Opt., 2015,8(1):91-98. (in Chinese)
LIU R L, WU D Q, LIU S H, et al.. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew. Chem. Int. Ed., 2009, 48(25):4598-4601.
ZHU H, WANG X L, LI Y L, et al.. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence propertiesw[J]. Chem. Commun., 2009, (34):5118-5120.
WANG X H, QU K G, XU B L, et al.. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents[J]. J. Mater. Chem., 2011, 21(8):2445-2450.
JIANG J, HE Y, LI S Y, et al.. Amino acids as the source for producing carbon nanodots:microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement[J]. Chem. Commun., 2012, 48(77):9634-9636.
XU X Y, RAY R, GU Y L, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004, 126(40):12736-12737.
李腾飞, 李昳玮, 肖璐, 等. 荧光可调控的碳量子点的电化学制备及性质研究[J]. 化学学报, 2014, 72(2):227-232. LI T F, LI Y W, XIAO L, et al.. Electrochemical preparation of color-tunable fluorescent carbon quantum dots[J]. Acta Chim. Sinica, 2014, 72(2):227-232. (in Chinese)
WANG X, CAO L, LU F S, et al.. Photoinduced electron transfers with carbon dots[J]. Chem. Commun., 2009, (25):3774-3776.
LU J, YANG J X, WANG J Z, et al.. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8):2367-2375.
张存兰. 生物质燃烧气化焦油成分分析研究[J]. 化学分析计量, 2009, 18(6):55-57. ZHANG C L. Component analysis for biomass burning gasification tar[J]. Chem. Anal. Meterage, 2009, 18(6):55-57. (in Chinese)
张朝平, 邓伟, 胡林, 等. 微乳液法制备超细Ni-Fe复合物微粒[J]. 无机材料学报, 2001, 16(3):481-485. ZHANG C P, DENG W, HU L, et al.. Preparation of ultrafine Ni-Fe composite particles by microemulsion[J]. J. Inorg. Mater., 2001, 16(3):481-485. (in Chinese)
YU H, ZHANG H C, HUANG H, et al.. ZnO/carbon quantum dots nanocomposites:one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[J]. New J. Chem., 2012, 36(4):1031-1035.
MING H, MA Z, LIU Y, et al.. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J]. Dalton Trans., 2012, 41(31):9526-9531.