浏览全部资源
扫码关注微信
1. 天津市中环量子科技有限公司 天津,300385
2. 南方科技大学 电子与电气工程系,广东 深圳,518055
Received:30 December 2016,
Revised:02 March 2017,
Published:05 August 2017
移动端阅览
安娜, 卢睿, 马昊玥等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J]. 发光学报, 2017,38(8): 1003-1009
AN Na, LU Rui, MA Hao-yue etc. Synthesis of CdSe/CdS Core/Shell Quantum Dots Luminescent Microspheres and Their Application for WLEDs[J]. Chinese Journal of Luminescence, 2017,38(8): 1003-1009
安娜, 卢睿, 马昊玥等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J]. 发光学报, 2017,38(8): 1003-1009 DOI: 10.3788/fgxb20173808.1003.
AN Na, LU Rui, MA Hao-yue etc. Synthesis of CdSe/CdS Core/Shell Quantum Dots Luminescent Microspheres and Their Application for WLEDs[J]. Chinese Journal of Luminescence, 2017,38(8): 1003-1009 DOI: 10.3788/fgxb20173808.1003.
采用有机化学合成法,利用正三辛基膦(TOP)辅助的快速注入生长方法,改进传统的制备工艺,实现了CdSe/CdS厚壳层核壳(8.6 ML)量子点复合材料的合成制备,并对所合成的核、核壳量子点及其复合材料的晶格结构、形貌特点与发光性质进行了XRD、TEM、SEM、UV-Vis、PL表征和红光补偿效果测试。测试结果表明,CdSe核具有立方纤锌矿晶格结构;CdSe/CdS量子点复合材料直径为45~75 m,呈菱形规则形貌,且颗粒分散性良好。采用该方法,可以提高量子产率,产率由4%(CdSe核)升至48%(CdSe/CdS核壳量子点);可以增强激子态发光能力,CdSe/CdS核壳量子点复合材料的荧光强度约为CdSe核的13倍。将该材料与YAG:Ce
3+
黄色荧光粉组合应用,获得了高光效(148.29 lm/W)、高显色指数(Ra为90.1,R9为97.0)的白光发光二级管,表明按照上述方法获得的CdSe/CdS核壳量子点复合材料在白光发光二极管中深红光波段具有较好的补偿效果。
By adopting three trioctylphosphine (TOP) assisted rapid injection growth method
and combining a composite material for fluorescent quantum dot micro-nano packaging
CdSe/CdS core-shell quantum dots luminescent microspheres (LMS) with thick shell(8.6 ML)were synthesized. It is an organic-synthesis method. The lattice structure
morphology composition and optical properties of the as-prepared
core-shell quantum dots and LMS were characterized by X-ray powder diffraction (XRD)
transmission electron microscopy (TEM)
scanning electron microscopy (SEM)
UV-Vis absorption
photo-luminescence spectrum (PL) and red-light compensation test
respectively. The obtained CdSe core has a cubic phase zinc blend structure. The diameters of LMS are about 45-75 m with diamond rules of morphology
and the particles disperse in order. The method aforementioned can improve the quantum yield. The quantum yield is improved from 4% (CdSe core) to 48% (CdSe/CdS core-shell quantum-dots). Besides
the luminous power of exciton-states is enhanced
and the fluorescence intensity of CdSe/CdS core-shell quantum-dots is about 13 times larger than that of CdSe core. By applying the LMS and YAG:Ce
3+
yellow phosphor combination
the white light-emitting diode (WLED) with high efficiency (148.29 lm/W) and high color rendering index (Ra is 90.1
R9 is 97.0) are obtained. The results indicate that the LMS have good compensation effect for the deep-red-light-band.
中华人民共和国国务院. 国家中长期科学和技术发展规划纲要(2006-2020)[R]. 2006. The State Council of The People's Republic of China. National Medium and Long-term Science and Technology Development Plan Outline (2006-2020)[R]. China, 2006. (in Chinese)
周青超, 柏泽龙, 鲁路, 等. 白光LED远程荧光粉技术研究进展与展望[J]. 中国光学, 2015, 8(3):313-328. ZHOU Q C, BAI Z L, LU L, et al.. Remote phosphor technology for white LED applications:advances and prospects[J]. Chin. Opt., 2015, 8(3):313-328. (in Chinese)
肖华, 吕毅军, 朱丽虹, 等. 远程荧光体白光发光二极管的发光性能[J]. 光子学报, 2014, 43(5):0523003. XIAO H, LV Y J, ZHU L H, et al.. Luminous performance of remote phosphor white LED[J]. Acta Photon. Sinica, 2014, 43(5):0523003. (in Chinese)
沈常宇. 高显色白光LED用荧光粉的合成和光谱研究[D]. 杭州:浙江大学, 2009. SHEN C Y. Synthesis and Luminous Characteristics of Phosphors for High Color Rendering Index White LED[D]. Hangzhou:Zhejiang University, 2009. (in Chinese)
柳杨, 刘志伟, 卞祖强, 等. 高效、稳定Ⅱ-Ⅵ族量子点发光二极管(LED)的研究进展[J]. 无机化学学报, 2015, 31(9):1751-1760. LIU Y, LIU Z W, BIAN Z Q, et al.. Research progress on high-efficiency and stable Ⅱ-Ⅵ groug quantum-dot light-emitting diodes[J]. Chin. J. Inorg. Chem., 2015, 31(9):1751-1760. (in Chinese)
LIM J, JUN S, JANG E, et al.. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes[J]. Adv. Mater., 2007, 19(15):1927-1932.
刘弘伟, LASKAR I R, 黄静萍, 等. 硒化镉发光量子点的制备及其在有机发光器件中的应用[J]. 发光学报, 2005, 26(3):321-326. LIU H W, LASKAR I R, HUANG C P, et al.. Synthesis and applications of luminescent CdSe quantum dots for OLEDs[J]. Chin. J. Lumin., 2005, 26(3):321-326. (in English)
YAM F K, HASSAN Z. Innovative advances in LED technology[J]. Microelectron. J., 2005, 36(2):129-137.
黄玉刚, 朱祖钊, 李光吉, 等. Ⅱ-Ⅵ族半导体量子点及其聚合物纳米复合材料的制备[J]. 合成材料老化与应用, 2008, 37(3):32-37. HUANG Y G, ZHU Z Z, LI G J, et al.. Preparation of Ⅱ-Ⅵ group semiconductor quantum dots(QDs) and QDs/polymer nanocomposites[J]. Synth. Mater. Aging Appl., 2008, 37(3):32-37. (in Chinese)
DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al.. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. J. Phys. Chem. B, 1997, 101(46):9463-9475.
TALAPIN D V, ROGACH A L, KORNOWSKI A, et al.. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture[J]. Nano Lett., 2001, 1(4):207-211.
BLACKMAN B, BATTAGLIA D M, MISHIMA T D, et al.. Control of the morphology of complex semiconductor nanocrystals with a type Ⅱ heterojunction, dots vs peanuts, by thermal cycling[J]. Chem. Mater., 2007, 19(15):3815-3821.
SMITH A M, MOHS A M, NIE S M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain[J]. Nat. Nanotechnol., 2009, 4(1):56-63.
COE-SULLIVAN S, LIU W H, ALLEN P, et al.. Quantum dots for LED downconversion in display applications[J]. ECS J. Solid State Sci. Technol., 2013, 2(2):R3026-R3030.
CHEN W, WANG K, HAO J J, et al.. High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating[J]. Nanophotonics, 2016, 5(4):565-572.
许献美, 吴亮亮, 郭晋芝, 等. CdSe/CdS核壳型量子点的合成及其在白光LED的应用[J]. 河北师范大学学报(自然科学版), 2012, 36(6):593-596. XU X M, WU L L, GUO J Z, et al.. Synthesis of CdSe/CdS core/shell quantum dots and their application for white LEDs[J]. J. Hebei Norm. Univ. (Nat. Sci. Ed.), 2012, 36(6):593-596. (in Chinese)
TALAPIN D V, KOEPPE R, GTNGER S, et al.. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality[J]. Nano Lett., 2003, 3(12):1677-1681.
LI J J, WANG A, GUO W Z, et al.. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. J. Am. Chem. Soc., 2003, 125(41):12567-12575.
陈肖慧, 袁曦, 华杰, 等. 壳层相关的CdSe核/壳量子点发光的热稳定性[J]. 发光学报, 2014, 35(9):1051-1057. (in Chinese) CHEN X H, YUAN X, HUA J, et al.. Shell-dependent thermal stability of CdSe Core/shell quantum dot photoluminescence[J]. Chin. J. Lumin., 2014, 35(9):1051-1057. (in Chinese)
孙聆东, 付雪峰, 钱程, 等. 水热法合成CdS/ZnO核壳结构纳米微粒[J]. 高等学校化学学报, 2001, 22(6):879-882. SUN L D, FU X F, QIAN C, et al.. Synthesis of core/shell structural CdS/ZnO nanoparticles by hydrothermal method[J]. Chem. J. Chin. Univ., 2001, 22(6):879-882. (in Chinese)
王璐, 王德平, 黄文旵. Ⅱ-Ⅵ族半导体量子点合成方法的研究进展[J]. 材料导报, 2005, 19(S1):12-14. WANG L, WANG D P, HUANG W H. Research development on synthesis methods of Ⅱ-Ⅵ families semiconductor quantum dots[J]. Mater. Rev., 2005, 19(S1):12-14. (in Chinese)
FRSTER T. Zwischenmolekulare energiewanderung und fluoreszenz[J]. Ann. Phys., 1948, 437(1-2):55-75.
LAKOWICZ J R. Principles of Fluorescence Spectroscopy[M]. 3rd ed. New York:Springer, 2006:443-472.
0
Views
144
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution