RUAN Wei-wei, LIU Zhi-guo, LIU Cheng-zhen etc. Photoluminescence Properties of Eu<sup>3+</sup>-activated Ca<sub>1.9</sub> Eu<sub>0.1</sub> NaMg<sub>2-<em>x</em></sub> Zn<sub><em>x</em></sub>(VO<sub>4</sub>)<sub>3</sub>(0 &le; <em>x</em> &le; 1.0) Phosphor[J]. Chinese Journal of Luminescence, 2017,38(8): 995-1002
RUAN Wei-wei, LIU Zhi-guo, LIU Cheng-zhen etc. Photoluminescence Properties of Eu<sup>3+</sup>-activated Ca<sub>1.9</sub> Eu<sub>0.1</sub> NaMg<sub>2-<em>x</em></sub> Zn<sub><em>x</em></sub>(VO<sub>4</sub>)<sub>3</sub>(0 &le; <em>x</em> &le; 1.0) Phosphor[J]. Chinese Journal of Luminescence, 2017,38(8): 995-1002 DOI: 10.3788/fgxb20173808.0995.
Photoluminescence Properties of Eu3+-activated Ca1.9 Eu0.1 NaMg2-x Znx(VO4)3(0 ≤ x ≤ 1.0) Phosphor
and their photoluminescence and thermal quenching properties were studied. The samples were verified through powder X-ray diffraction
and the target phase was identified with tiny impurity of EuVO
4
in the obtained product. Excited by 355 nm
all the samples show the characteristic emissions from[VO
4
]
3-
group and Eu
3+
ion. With the increment of
x
value
the intensity of either of the above mentioned emissions increases at first and then decreases
while a red-shifting excitation peak from 347 nm to 356 nm and a decreasing Stokes-shift can be observed. Stronger hybridization effect occurres between the Zn3d orbital and the O2p orbital resulted by the increasing
x
value which is supposed to be responsible for that phenomena. Furthermore
the
x
value corresponding to the observed intensity maximum for Eu
3+
emission is different from the one for self-activated emission. Their highest difference is observed in the sample of
x
=1.0. It could be due to an apparently more serious thermal quenching of self-activated emission than that of Eu
3+
ion emission. Then
a temperature-sensitive color of the emission is also observed in the samples excited by the near ultraviolet light.
关键词
Keywords
references
KRAMES M R, SHCHEKIN O B, MUELLER-MACH R. Status and future of high-power light-emitting diodes for solid-state lighting[J]. J. Dis. Technol., 2007, 3(2):160-175.
周青超, 柏泽龙, 鲁路, 等. 白光LED远程荧光粉技术研究进展与展望[J]. 中国光学, 2015, 8(3):313-328. ZHOU Q C, BAI Z L,LU L, et al.. Remote phosphor technology for white LED applications:advances and prospects[J]. Chin. Opt., 2015, 8(3):313-328. (in Chinese)
MCKITTRICK J, SHEA-ROHWER L E. Review:down conversion materials for solid-state lighting[J]. J. Am. Ceram. Soc., 2014, 97(5):1327-1352.
LIN C C, LIU R S. Advances in phosphors for light-emitting diodes[J]. J. Phys. Chem. Lett., 2011, 2(11):1268-1277.
JANSEN T, JVSTEL T, KIRM M, et al.. Site selective, time and temperature dependent spectroscopy of Eu3+ doped apatites (Mg,Ca,Sr)2Y8 Si6O26[J]. J. Lumin., 2017, 186:205-211.
XIE R J, HIROSAKI N, SUEHIRO T, et al.. A simple, efficient synthetic route to Sr2 Si5N8:Eu2+-based red phosphors for white light-emitting diodes[J]. Chem. Mater., 2006, 18(23):5578-5583.
GRIGORJEVAITE J, KATELNIKOVAS A. Luminescence and luminescence quenching of K2Bi(PO4)(MoO4):Eu3+ phosphors with efficiencies close to unity[J]. ACS Appl. Mater. Interf., 2016, 8(46):31772-31782.
SEIBALD M, ROSENTHAL T, OECKLER O, et al.. New polymorph of the highly efficient LED-phosphor SrSi2O2N2:Eu2+-polytypism of a layered oxonitridosilicate[J]. Chem. Mater., 2013, 25(9):1852-1857.
王迪, 孟祥雨, 赵嘉伟, 等. Ca9Al(PO4)7:Eu2+的发光、浓度猝灭及温度稳定性[J]. 光子学报, 2015, 44(5):0516002. WANG D, MENG X Y, ZHAO J W, et al.. Luminescence, concentration quenching and thermal stability of Ca9Al(PO4)7:Eu2+[J]. Acta Photon. Sinica, 2015, 44(5):0516002. (in Chinese)
杨志平, 梁晓双, 赵引红, 等. 橙红色荧光粉Ca3 Y2(Si3O9)2:Sm3+的制备及发光性能的表征[J]. 光子学报, 2014, 43(3):0316002. YANG Z P, LIANG X S, ZHAO Y H, et al.. Preparation and luminescence properties of reddish-orange phosphors Ca3 Y2(Si3O9)2:Sm3+[J]. Acta Photon. Sinica, 2014, 43(3):0316002. (in Chinese)
曹帅. 碱土七钒酸盐发光材料的制备及发光性质研究[D]. 合肥:安徽大学, 2010. CAO S. The Synthesize and Performance Study of Alkaline Earth Metal Seven Vanadates Luminescent Materials[D]. Hefei:Anhui University, 2010. (in Chinese)
刘昊, 阮健, 韩建军, 等. 绿色钒酸盐荧光粉Ca5Mg4(VO4)6的制备和发光性能[J]. 硅酸盐学报, 2013, 41(3):334-341. LIU H, RUAN J, HAN J J, et al.. Preparation and photoluminescence properties of green-emitting vanadate phosphor Ca5Mg4(VO4)6[J]. J. Chin. Ceram. Soc., 2013, 41(3):334-341. (in Chinese)
MATSUSHIMA Y, KOIDE T, HIRO-OKA M, et al.. Self-activated vanadate compounds toward realization of rare-earth-free full-color phosphors[J]. J. Amer. Ceram. Soc., 2015, 98(4):1236-1244.
SHIRAISHI Y, TAKESHITA S, ISOBE T. Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles:photoluminescence and photocatalytic activity[J]. J. Phys. Chem. C, 2015, 119(24):13502-13508.
SETLUR A A, COMANZO H A, SRIVASTAVA A M, et al.. Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2 NaMg2 V3O12:Eu3+[J]. J. Electrochem. Soc., 2005, 152(12):H205-H208.
许静, 傅亚, 原金海, 等. Ba3V2O8:Eu3+纳米花的制备及光致发光性能研究[J]. 功能材料, 2012, 43(18):2564-2567. XU J, FU Y, YUAN J H, et al.. Synthesis and photoluminescence property of Ba3V2O8:Eu3+ nanoflowers[J]. J. Funct. Mater., 2012, 43(18):2564-2567. (in Chinese)
DHOBALE A R, MOHAPATRA M, NATARAJAN V, et al.. Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2 NaMg2 V3O12 co-doped with Dy and Sm[J]. J. Lumin., 2012, 132(2):293-298.
CHEN X, XIA Z G, YI M, et al.. Rare-earth free self-activated and rare-earth activated Ca2 NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties[J]. J. Phys. Chem. Solids, 2013, 74(10):1439-1443.
XIE H D, TSUBOI T, HUANG W. Luminescence and quantum efficiencies of Eu3+-doped vanadate garnets[J]. J. Am. Ceram. Soc., 2014, 97(5):1434-1441.
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallog. A, 1976, 32(5):751-767.
刘志国, 刘成振, 阮健, 等. 自激活荧光粉Ca2 NaMg2-x Znx(VO4)3(0 x 1.2)的发光性质[J]. 武汉理工大学学报, 2016, 38(1):7-12. LIU Z G, LIU C Z, RUAN J, et al.. Photoluminescence properties of self-activated Ca2 NaMg2-x Znx(VO4)3(0 x 1.2) phosphor[J]. J. Wuhan Univ. Technol., 2016, 38(1):7-12. (in Chinese)
KRAUS W, NOLZE G. Powder Cell for Windows (version 2.3)[M]. Berlin:Federal Institute for Materials Research and Testing, 1999.
KRAUS W, NOLZE G. Powder cell-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns[J]. J. Appl. Crystallog., 1996, 29(3):301-303.
LI L P, LI G S, XUE Y F, et al.. Structure, luminescence, and transport properties of EuVO4[J]. J. Electrochem. Soc., 2001, 148(9):J45-J49.
NAKAJIMA T, ISOBE M, TSUCHIYA T, et al.. A revisit of photoluminescence property for vanadate oxides A VO3(A:K, Rb and Cs) and M 3V2O8 (M:Mg and Zn)[J]. J. Lumin., 2009, 129(12):1598-1601.
RONDE H, BLASSE G. The nature of the electronic transitions of the vanadate group[J]. J. Inorg. Nucl. Chem., 1978, 40(2):215-219.
HSU C, POWELL R C. Energy transfer in europium doped yttrium vanadate crystals[J]. J. Lumin., 1975, 10(5):273-293.
YAMAMOTO H, SEKI S, JESER J P, et al.. Thermal quenching of luminescence in a disordered compound:EuNa2Mg2(VO4)3[J]. J. Electrochem. Soc., 1980, 127(3):694-701.
WANG D F, TANG J W, ZOU Z G, et al.. Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M 3V2O8 (M=Mg, Ni, Zn)[J]. Chem. Mater., 2005, 17(20):5177-5182.
Luminescence Properties and Application of Ce3+ Doped Ba3Y2(BO3)4 Phosphor
Methods for Evaluating Hydrolytic Degradation of Mn4+-activated Fluoride Phosphors
Enhanced Near-infrared Ⅱ Emission in MgAlxGa2-xO4∶Ni2+ Phosphor via Al/Ga Ions Substitution
Regulating Near-infrared Luminescence of ZnGa2O4∶Cr3+via F/O Anion Substitution
Luminous Performance and Site-occupation Effect of Sr2InP3O11∶Eu3+ Red Phosphor
Related Author
SUN Xiaoyuan
LIU Chunmiao
LI Min
TIAN Wanlu
LOU Wenjing
LI Haoxiang
TAN Qinqin
LI Cheng
Related Institution
Department of Physics, Changchun Normal University
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
School of Materials Science and Engineering, Zhengzhou University
School of Electrical Engineering and Intelligentization, Dongguan University of Technology
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University