浏览全部资源
扫码关注微信
沈阳理工大学 装备工程学院, 辽宁 沈阳 110159
Received:07 March 2017,
Revised:17 April 2017,
Published:05 July 2017
移动端阅览
唐恩凌, 李振波, 韩雅菲等. 超高速碰撞2A12铝板产生闪光辐射的空间演化规律[J]. 发光学报, 2017,38(7): 944-952
TANG En-ling, LI Zhen-bo, HAN Ya-fei etc. Spatial Evolutionary Rules of Light Flash Radiation Generated by Hypervelocity Impact on 2A12 Aluminum Plate[J]. Chinese Journal of Luminescence, 2017,38(7): 944-952
唐恩凌, 李振波, 韩雅菲等. 超高速碰撞2A12铝板产生闪光辐射的空间演化规律[J]. 发光学报, 2017,38(7): 944-952 DOI: 10.3788/fgxb20173807.0944.
TANG En-ling, LI Zhen-bo, HAN Ya-fei etc. Spatial Evolutionary Rules of Light Flash Radiation Generated by Hypervelocity Impact on 2A12 Aluminum Plate[J]. Chinese Journal of Luminescence, 2017,38(7): 944-952 DOI: 10.3788/fgxb20173807.0944.
为了描述超高速碰撞2A12铝板产生闪光辐射的空间演化规律,利用瞬态光纤高温计测量系统并结合二级轻气炮加载系统,开展了弹丸以30的入射角度和不同碰撞速度条件下的超高速撞击实验。基于闪光辐射强度和辐射温度的实验数据处理得到了超高速碰撞2A12铝板在撞击点附近产生的最大闪光辐射强度和最大闪光辐射温度,基于大量实验,建立了撞击点附近最大闪光辐射的空间演化模型。并结合Origin软件对实验所得数据的拟合,得到了最大闪光辐射强度和辐射温度随探测点到着靶点间距离变化的拟合函数关系式。实验结果还表明:在相近碰撞速度、相同碰撞角度条件下,在同一椭球面上不同探测点位置处的最大闪光辐射强度和最大闪光温度差别不大,验证了撞击产生的闪光辐射以近似椭球的形状向外膨胀,随着等离子体云的向外膨胀,离碰撞点越远产生的最大闪光辐射强度和最大闪光辐射温度均越小;在相同碰撞角度、不同碰撞速度条件下,在同一椭球面上不同探测点位置处的最大闪光辐射强度和最大闪光温度均随碰撞速度的增加而增大。该研究在导弹拦截、天体物理及深空探测领域具有重要的应用价值。
In order to describe the spatial evolution of the light flash radiation produced by hypervelocity impact on 2A12 aluminum plate
the hypervelocity impact experiments were performed by using instantaneous optical pyrometer measurement system and two-stage light gas gun loading system at the conditions of the projectile incidence angle of 30 and the different impact velocities. The maximum flash radiant intensity and the maximum flash radiant temperature were obtained based on the experimental data treatments from flash radiant intensity and radiant temperature created by hypervelocity impact on 2A12 aluminum plate. The maximum flash radiant spatial evolutionary model near the impact point was established from plenty of experimental data. By fitting the experimental data with Origin software
the fitting function relations were obtained about the maximum flash radiant intensity and the radiant temperature with the distance from the detection point to the impact points. The experimental results also shown that the maximum flash radiant intensity and radiant temperature had few differences at the same surface of the ellipsoid positions
when the impact velocity and the impact angle were closen to the same conditions. All these verified that the light flash radiation expanded approximately the ellipsoid shape outward
and maximum flash radiant intensity and radiant temperature smaller from the collision point more far with the plasma cloud expansion; the maximum flash radiant intensity and radiant temperature will increase with increasing of the impact velocities at the same surface of the ellipsoid positions of the different detection points. The research has an important applied value in the field of missile interception
astrophysics and deep space exploration.
EICHHORN G. Analysis of the hypervelocity impact process from impact flash measurements[J].Planet. Space Sci.,1976, 24(8):771-776.
GEHRING J W, WARNICA R L. An investigation of the phenomena of impact flash and its potential use as a hit detection and target discrimination technique[C]. Proceeding of The 6th Hypervelocity Impact Symposium, Cleveland, USA, 1963:627-681.
BURCHELL M J, COLE M J, RATCLIFF P R. Light flash and ionization from hypervelocity impacts on ice[J]. Icarus, 1996, 122:358-365.
BAIRD J K, HOUGH G R, KING T R. Velocity dependence of impact fluorescence[J]. Int. J. Impact Eng., 1997, 19(3):273-276.
MELOSH H J. Remote visual detection of impacts on the lunar surface[J]. LPSC, 1993, 24:975-976.
ARTEM'EVA N A, KOSAREV I B, NEMTCHINOV I V. Light flashes caused by Leonid meteoroid impacts on the lunar surface[J]. Solar System Res., 2001,35(3):177-180.
RAMJAUN D, SHINOHARA M, KATO I. Spectroscopic study of radiation associated with hypervelocity impacts[C]. Proceedings of The 23rd International Symposium on Shock Waves, Fort Worth, USA, 2001.
HEUNOSKE D, SCHIMMEROHN M, OSTERHOLZ J. Time-resolved emission spectroscopy of impact plasma[C]. The 12th Hypervelocity Impact Symposium, 2012:MD, Baltimore, Margland, USA, 2012.
石安华, 柳森, 黄洁, 等. 铝弹丸超高速碰撞铝靶光谱辐射特性实验研究[J]. 宇航学报, 2008, 29(2):715-717. SHI A H, LIU S, HUANG J,et al..Spectra measurement of radiation produced by aluminum projectiles impacting aluminum targets at hypervelocity speeds[J]. J. Astron., 2008, 29(2):715-717. (in Chinese)
唐恩凌, 张庆明, 黄正平. PMT在测量超高速碰撞闪光趋势中的应用[J]. 北京理工大学学报, 2007, 27(4):283-286. TANG E L, ZHANG Q M, HUANG Z P. Application of photoelectric magnification tubes (PMT) in light flash trend measurements during hypervelocity impact[J]. Trans. Beijing Institute of Technol., 2007, 27(4):283-286. (in Chinese)
唐恩凌, 张庆明, 张健. 铝-铝超高速碰撞闪光现象的初步实验测量[J]. 航空学报, 2009, 30(10):1895-1900. TANG E L, ZHANG Q M, ZHANG J. Preliminary experimental measurement of light flash phenomena produced in Al-Al hypervelocity impacts[J]. Acta Aeronaut. Astron. Sinica, 2009, 30(10):1895-1900. (in Chinese)
张薇, 唐恩凌, 相升海, 等. 超高速碰撞2024-T4铝靶产生的闪光强度测量[J]. 强激光与粒子束, 2011, 23(12):3412-3416. ZHANG W, TANG E L, XIANG S H, et al.. Measurement of light flash intensity produced by hypervelocity impact of 2014-T4 aluminum target[J].High Power Laser Particle Beam, 2011, 23(12):3412-3416. (in Chinese)
唐恩凌, 张庆明, 张薇, 等. 超高速碰撞LY12铝靶产生闪光的辐射演化特征[J]. 强激光与粒子束, 2012, 24(10):2454-2458. TANG E L, ZHANG Q M, ZHANG W, et al.. Evolutionary characteristics of light flash radiation produced by hypervelocity impact on LY12 aluminum targets[J].High Power Laser Particle Beam, 2012, 24(10):2454-2458. (in Chinese)
唐恩凌, 许红杰, 张庆明, 等. 超高速碰撞LY12铝靶产生闪光辐射的速度及角度效应[J]. 强激光与粒子束, 2014, 26(1):014003-1-5. TANG E L, XU H J, ZHANG Q M, et al.. Impact velocity and incidence angles effects of light flash radiation produced by hypervelocity impact on LY12 aluminum targets[J]. High Power Laser Particle Beam, 2014, 26(1):014003-1-5. (in Chinese)
0
Views
294
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution