浏览全部资源
扫码关注微信
1. 常州大学 怀德学院,江苏 常州,213016
2. 江苏理工学院 材料工程学院, 江苏 常州 213001
3. 常州大学 数理学院,江苏 常州,213164
Received:12 December 2016,
Revised:21 January 2017,
Published:05 July 2017
移动端阅览
何祖明, 夏咏梅, 唐斌等. ZnO/Cu<sub>2</sub>O异质结纳米阵列制备及光催化性能[J]. 发光学报, 2017,38(7): 936-943
HE Zu-ming, XIA Yong-mei, TANG Bin etc. Preparation and Photocatalytic Property of ZnO/Cu<sub>2</sub>O Heterostructured Nanorod Arrays[J]. Chinese Journal of Luminescence, 2017,38(7): 936-943
何祖明, 夏咏梅, 唐斌等. ZnO/Cu<sub>2</sub>O异质结纳米阵列制备及光催化性能[J]. 发光学报, 2017,38(7): 936-943 DOI: 10.3788/fgxb20173807.0936.
HE Zu-ming, XIA Yong-mei, TANG Bin etc. Preparation and Photocatalytic Property of ZnO/Cu<sub>2</sub>O Heterostructured Nanorod Arrays[J]. Chinese Journal of Luminescence, 2017,38(7): 936-943 DOI: 10.3788/fgxb20173807.0936.
利用湿化学法在FTO玻璃基底上制备了高度规整的ZnO纳米棒阵列(ZnO NRAs),以此为衬底,采用磁控溅射法在ZnO NRAs表面沉积Cu
2
O薄膜。分别用X射线衍射仪、X射线光电子能谱、扫描电镜、光致光谱、紫外可见分光光度计和电化学工作站对样品的物相、形貌、吸收光谱、光电性能进行了表征,用甲基橙(MO)模拟有机物废水研究复合材料的光催化性能。结果表明:ZnO纳米棒为六方纤锌矿结构,其直径约为80~100 nm,长约2~3 m,棒间距约100~120 nm。立方晶系的Cu
2
O颗粒直径约为100~300 nm,形成致密膜层并紧密覆盖在ZnO NRAs表面上,构成ZnO/Cu
2
O异质结纳米阵列(ZnO/Cu
2
O HNRAs)结构。与纯ZnO NRAs和Cu
2
O相比,ZnO/Cu
2
O HNRAs在可见光范围内的吸收显著增强,吸收波长向可见光方向偏移。ZnO/Cu
2
O HNRAs的载流子传递界面的电荷转移速度快,有效促进了光生电子和空穴的分离。在紫外-可见光照射65 min后, ZnO/Cu
2
O HNRAs的降解效率为94%,分别是纯ZnO NRAs和Cu
2
O的18倍和1.7倍。
ZnO nanorod arrays (ZnO NRAs) on FTO-glass substrates were prepared by chemical method
then Cu
2
O film was deposited on ZnO NRAs surface by using magnetron sputtering method. The crystal phase
morphology
UV-Vis absorbance spectra and photoelectric property were characterized by X-ray diffraction
X-ray photoelectron spectroscope
scanning electron microscopy
photoluminescence spectroscopy
UV-Vis spectrophotometer and electrochemical workstation
respectively. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange (MO) under UV-Vis light irradiation. The results show that ZnO NRAs are wurtzite structure phase with diameter of 80-100 nm
length of 2-3 m
and rod interval distance of 100-120 nm. Cu
2
O particles are the cubic phase with grain diameter of 100-300 nm and form a dense membrane layer on ZnO NRAs
which constitutes ZnO/Cu
2
O heterojunction nanorod arrays(ZnO/Cu
2
O HNRAs) structure. Compared with pure ZnO NRAs and Cu
2
O film
the absorption intensity in the visible region of ZnO/Cu
2
O HNRAs is significantly enhanced and the absorption wavelength redshifts. The charge transfer speed on the carrier transmission interface of ZnO/Cu
2
O HNRAs is faster
contributing to the separation of photoelectrons from hole. Irradiated under UV-Vis light for 65 min
the MO degradation efficiency of ZnO/Cu
2
O HNRAs is 94%
18 times than that of pure ZnO NRAs and 1.7 times than that of pure Cu
2
O film.
BHIRUD A P, SATHAYE S D, WAICHAL R P, et al.. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light[J]. Nanoscale, 2015, 7(11):5023-5034.
FANG X, LI Y, ZHANG S, et al.. The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells[J]. Solar Energy, 2014, 105:14-19.
XIA Y M, ZHANG Y F, YU X Q, et al.. Low-temperature solution growth of ZnO nanocone/highly oriented nanorod arrays on copper[J]. J. Phys. Chem. B, 2014, 118(41):12002-12007.
XIONG J Y, LI Z, CHEN J, et al.. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu2O core-shell heteronanowires[J]. ACS Appl. Mater. Interf., 2014, 6(18):15716-15725.
CHATTERJEE S, SAHA S K, PAL A J. Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique[J]. Solar Energy Mater. Solar Cells, 2016, 147:17-26.
ZHAO W Y, FU W Y, YANG H B, et al.. Electrodeposition of Cu2O films and their photoelectrochemical properties[J]. Cryst Eng. Comm., 2011, 13(8):2871-2877.
MINAMI T, MIYATA T, NISHI Y. Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells[J]. Solar Energy Mater. Solar Cells, 2016, 147:85-93.
NIU W Z, ZHOU M Y, YE Z Z, et al.. Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment[J]. Solar Energy Mater. Solar Cells, 2016, 144:717-723.
BAI Z M, ZHANG Y H. Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions[J]. J. Alloys Compd., 2016, 675:325-330.
LIU J S, ZHU K J, SHENG B B, et al.. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites[J]. J. Alloys Compd., 2015, 618:67-72.
HABIBI M H, RAHMATI M H. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method[J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 137:160-164.
娄慧慧, 娄天军, 崔晓瑞, 等. PbS/CdS纳米晶共敏化ZnO纳米线太阳能电池的性能研究[J]. 人工晶体学报, 2014, 43(3):614-618. LOU H H, LOU T J, CUI X R, et al.. Properties of PbS/CdS nanocrystalline co-sensitized ZnO nanowires solar cells[J]. J. Synth. Cryst., 2014, 43(3):614-618. (in Chinese)
AWASTHI G P, ADHIKARI S P, KO S, et al.. Facile synthesis of ZnO flowers modi fied graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties[J]. J. Alloys Compd., 2016, 682:208-215.
ABD-ELLAH M, THOMAS J P, ZHANG L, et al.. Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices[J]. Solar Energy Mater. Solar Cells, 2016, 152:87-93.
GUO D Y, JU Y. Preparation of Cu2O/ZnO p-n junction by thermal oxidation method for solar cell application[J]. Mater. Today Proc., 2016, 3(2):350-353.
HE Z M, XIA Y M, TANG B, et al.. Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites[J]. Mater. Lett., 2016, 184:148-151.
ELFADILL N G, HASHIM M R, SARON K M A, et al.. Ultraviolet-visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate[J]. Mater. Chem. Phys., 2015, 156:54-60.
XIA Y M, ZHANG Y F, YU X Q, et al.. Direct solution phase fabrication of ZnO nanostructure arrays on copper at near room temperature[J]. Cryst Eng. Comm., 2014, 16(24):5394-5401.
刘阳, 马骥, 唐斌, 等. 金属电阻率Cu/Cu2O半导体弥散复合薄膜的制备及其偏压效应[J]. 功能材料, 2016, 47(3):3205-3209. LIU Y, MA J, TANG B, et al.. Fabrication of semiconducting Cu/Cu2O dispersive composite thin films with metallic resistivity and the bias voltage effect[J]. J. Funct. Mater., 2016, 47(3):3205-3209. (in Chinese)
XING X Y, ZHENG K B, XU H H, et al.. Synthesis and electrical properties of ZnO nanowires[J]. Micron, 2006, 37(4):370-373.
TAKEHIRO N, YAMADA M, TANAKA K I, et al.. Oxidation states of submonolayer copper islands on a Pd(111) surface exposed to oxygen[J]. Surf. Sci., 1999, 441(1):199-205.
MA J F, WANG K, LI L Y, et al..Visible-light photocatalytic decolorization of Orange Ⅱ on Cu2O/ZnO nanocomposites[J]. Ceram. Int., 2015, 41(2):2050-2056.
MESSAOUDI O, MAKHLOUF H, SOUISSI A, et al.. Synthesis and characterization of ZnO/Cu2O core-shell nanowires grown by two-step electrodeposition method[J]. Appl. Surf. Sci., 2015, 343:148-152.
WANG L D, ZHAO Y X, WANG G H, et al.. Enhancing the efficiency of ZnO/Cu2O inorganic nanostructure solar cells simply by CdS quantum dots[J]. Solar Energy Mater. Solar Cells, 2014, 130:387-392.
BRAYEK A, GHOUL M, SOUISSI A, et al.. Structural and optical properties of ZnS/ZnO core/shell nanowires grown on ITO glass[J]. Mater. Lett., 2014, 129:142-145.
LI N, LIU G, ZHEN C, et al.. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly[J]. Adv. Funct. Mater., 2011, 21(9):1717-1722.
PAN X, ZHAO Y, LIU S, et al.. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts[J]. ACS Appl. Mater. Interf., 2012, 4(8):3944-3950.
ZHENG D F, PU X P, DU K P, et al.. Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties[J]. Sep. Purif. Technol., 2014, 137:82-85.
JIANG T F, XIE T F, CHEN L P, et al.. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance[J]. Nanoscale, 2013, 5(7):2938-2944.
LIU H, WANG J, FAN X M, et al.. Synthesis of Cu2O/T-ZnOW nanocompound and characterization of its photocatalytic activity and stability property under UV irradiation[J]. Mater. Sci. Eng. B, 2013, 178(2):158-166.
XU C, CAO L X, SU G, et al.. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes[J]. J. Hazard. Mater., 2010, 176(1-3):807-813.
MOHAMED R M, AAZAM E S. Preparation and characterization of core-shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene[J]. Appl. Catal. A:Gen., 2014, 480:100-107.
SHI J, LI J, HUANG X J, et al.. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedral[J]. Nano Res, 2011, 4(5):448-459.
SHANG S Q, JIAO X L, CHEN D R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties[J]. ACS Appl. Mater. Interfaces, 2012, 4(2):860-865.
ZHU H Y, JING R, FU Y Q, et al.. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation[J]. Appl. Surf. Sci., 2016, 369:1-10.
LIN Y B, LIN Y, MENG Y M, et al.. CdS quantum dots sensitized ZnO spheres via ZnS overlayer to improve efficiency for quantum dots sensitized solar cells[J]. Ceram. Int., 2014, 40(6):8157-8163.
0
Views
100
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution