LIU Yu-rong, HUANG He, LIU Jie. High Mobility ZnO Thin-film Transistor Fabricated by Sputtering at Room Temperature[J]. Chinese Journal of Luminescence, 2017,38(7): 917-922
LIU Yu-rong, HUANG He, LIU Jie. High Mobility ZnO Thin-film Transistor Fabricated by Sputtering at Room Temperature[J]. Chinese Journal of Luminescence, 2017,38(7): 917-922 DOI: 10.3788/fgxb20173807.0917.
High Mobility ZnO Thin-film Transistor Fabricated by Sputtering at Room Temperature
In order to reduce the operating voltage and increase the carrier mobility in zinc oxide thin-film transistor (ZnO TFT)
ZnO TFTs with high-
k
NbLaO as gate dielectric layer were fabricated on indium tin oxide/glass substrate by radio-frequency magnetron sputtering at room temperature
and the electrical properties of the device were characterized. The fabricated ZnO TFTs exhibit excellent device performances. The saturation drain current can reach to 2.2 mA at gate voltage of 5 V and drain voltage of 10 V. The saturation mobility increases drastically up to 107 cm
2
/(Vs)
which is one of the highest field-effect mobility values achieved in ZnO-based TFTs by room-temperature sputtering. The subthreshold swing and on-off current ratio are 0.28 V/decade and higher than 10
7
respectively. The relative mechanisms of high mobility
small subthreshold voltage swing and hysteresis phenomenon are discussed by analyzing the atom force microscope images of the NbLaO dielectric and ZnO active-layer film
and the low frequency noise behavior of the device.
关键词
Keywords
references
HU Z J, LIAO C W, LI W J, et al.. Integrated a-Si:H gate driver with low-level holding TFTs biased under bipolar pulses[J]. IEEE Trans. Electron Dev., 2015, 62(12):4044-4050.
ZHENG G T, LIU P T, WU M C. Design of dual-outputs-single-stage a-Si:H TFT gate driver for high resolution TFT-LCD application[J]. J. Soc. Inform. Disp., 2016, 24(5):330-337.
PARK J H, JANG G S, KIM H Y, et al.. High-performance poly-Si thin-film transistor with high-k ZrTiO4 gate dielectric[J]. IEEE Electron Dev. Lett., 2015, 36(9):920-922.
于遥, 张晶思, 陈黛黛, 等. PECVD分层结构对提高氢化非晶硅TFT迁移率的影响[J]. 物理学报, 2013, 62(13):138501. YU Y, ZHANG J S, CHEN D D, et al.. Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD[J]. Acta Phys. Sinica, 2013, 62(13):138501. (in Chinese)
ZHANG J, WU G D. Ultralow-voltage electric-double-layer oxide-based thin-film transistors with faster switching response on flexible substrates[J]. Chin. Phys. Lett., 2014, 31(7):078502.
张丽, 许玲, 董承远. 非晶InGaZnO薄膜晶体管驱动OLED像素电路的仿真研究[J]. 发光学报, 2014, 35(10):1264-1268. ZHANG L, XU L, DONG C Y. Simulation of amorphous-InGaZnO thin film transistors driven OLED pixel circuit[J]. Chin. J. Lumin., 2014, 35(10):1264-1268. (in Chinese)
WANG Y H, MA Q, ZHENG L L, et al.. Performance improvement of atomic layer-deposited ZnO/Al2O3 thin-film transistors by low-temperature annealing in air[J]. IEEE Trans. Electron Dev., 2016, 23(5):1893-1898.
ESRO M, VOURLIAS G, SOMERTON C, et al.. High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics[J]. Adv. Funct. Mater., 2015, 25(1):134-141.
FORTUNATO E, PIMENTELl A, PEREIRA L, et al.. High field-effect mobility zinc oxide thin film transistors produced at room temperature[J]. J. Non-Cryst. Solids, 2004, 338-340:806-809.
ZHANG L, LI J, ZHANG X W, et al.. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature[J]. Appl. Phys. Lett., 2009, 95(7):072112.
BROX-NILSEN C, JIN J, LUO Y, et al.. Sputtered ZnO thin-film transistors with carrier mobility over 50 cm2/(Vs)[J]. IEEE Trans. Electron Dev., 2013, 60(10):3424-3428.
TSUKAZAKI A, OHTOMO A, KAWASAKI M. High-mobility electronic transport in ZnO thin films[J]. Appl. Phys. Lett., 2006, 88(15):152106.
OKAMURA K, NIKOLOVA D, MECHAU N, et al.. Appropriate choice of channel ratio in thin-film transistors for the exact etermination of field-effect mobility[J]. Appl. Phys. Lett., 2009, 94(18):183503.
STEUDEL S, DE VUSSER S, DE JONGE S. Influence of the dielectric roughness on the performance of pentacene transistors[J]. Appl. Phys. Lett., 2004, 85(19):4400-4402.
KHAN T, VASILESKA D, THOMTON T J. Effect of interface roughness on silicon-on-insulator-metal-semiconductor field-effect transistor mobility and the device low-power high-frequency operation[J]. J. Vac. Sci. Technol. B, 2005, 23(4):1782-1784.
VOLKEL A R, STREET R A, KNIPP D. Carrier transport and density of state distributions in pentacene transistors[J]. Phys. Rev. B, 2002, 66(19):195336.
VERLAAK S, ARKHIPOV W, HEREMANS P. Modeling of transport in polycrystalline organic semiconductor films[J]. Appl. Phys. Lett., 2003, 82(5):745-747.
VALLETA A, MARIUCCI L, FORTUNATO G. Surface-scattering effects in polycrystalline silicon thin-film transistors[J]. Appl. Phys. Lett., 2003, 82(18):3119-3121.
TVAROZEK V, NOVOTNY I, SUTTA P, et al.. Influence of sputtering parameters on crystalline structure of ZnO thin films[J]. Thin Solid Films, 2007, 515(24):8756-8760.
RUMYANTSEV S L, JIANG C, SAMNAKAY R, et al.. 1/f noise characteristics of MoS2 thin-film transistors:comparison of single and multilayer structures[J]. IEEE Electron Dev. Lett., 2015, 36(5):517-519.