ZHANG Han, PEI Lei-lei, SU Shi-chen. Realization of UVB Lasing in High Quality Cubic ZnMgO Films[J]. Chinese Journal of Luminescence, 2017,38(7): 905-910
ZHANG Han, PEI Lei-lei, SU Shi-chen. Realization of UVB Lasing in High Quality Cubic ZnMgO Films[J]. Chinese Journal of Luminescence, 2017,38(7): 905-910 DOI: 10.3788/fgxb20173807.0905.
Realization of UVB Lasing in High Quality Cubic ZnMgO Films
The optical and structural properties of high-quality epitaxial Zn
1-
x
Mg
x
O films deposited by pulsed-laser deposition (PLD) were studied.Zn
1-
x
Mg
x
O films with~45% Mg incorporation were measured by EDS (Energy dispersive spectroscopy).XRD (X-ray diffraction) measurement results show that Zn
0.55
Mg
0.45
O films have a cubic phase structure without phase separation and are epitaxial grown along the
c
-axis of Al
2
O
3
substrate.In the films
intense UVB optical pumped stimulated emission of this pure cubic-phase ZnMgO can be observed.The lasing threshold is about 22 kW/cm
2
.Lasing occurs at UVB wavelength of~310 nm under optical pumping.
关键词
Keywords
references
LIU Y, YU L, HU Y, et al.. A magnetically separable photocatalyst based on nest-like -Fe-O-/ZnO double-shelled hollow structures with enhanced photocatalytic activity[J]. Nanoscale, 2012, 4(1):183-187.
ETACHERI V, ROSHAN R, KUMAR V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis[J]. Acs Appl. Mater. Interf., 2012, 4(5):2717-2725.
WANG X, LIAO M Y, ZHONG Y T, et al.. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors[J]. Adv. Mater., 2012, 24(25):3421-3425.
LIU D, LI C C, ZHOU F, et al.. Rapid synthesis of monodisperse au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement[J]. Sci. Rep., 2015, 5:7686-7686.
LEE C T, LIN H Y, TSENG C Y. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors[J]. Sci. Rep., 2015, 5:13705.
WANG L K, JU Z G, ZHANG J Y, et al.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices[J]. Appl. Phys. Lett., 2009, 95(13):131113-1-3.
CHEN Y Y, WANG C H, CHEN G S, et al.. Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect[J]. Nano Energy, 2015, 11:533-539.
ZENG H, CAI W P, HU J L, et al.. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation[J]. Appl. Phys. Lett., 2006, 88(17):171910-1-3.
ZHENG Q, HUANG F, DING K, et al.. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates[J]. Appl. Phys. Lett., 2011, 98(22):221112-1-3.
KUMAR M H, YANTARA N, DHARANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chem. Commun., 2013, 49(94):11089-11091.
LIANG Z Q, ZHANG Q F, WIRANWETCHAYAN O, et al.. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells[J]. Adv. Funct. Mater., 2012, 22(10):2194-2201.
TANG K, GU S L, YE J D, et al.. High-quality ZnO growth, doping, and polarization effect[J]. J. Semicond., 2016, 37(3):031001.
TIAN F B, DUAN D F, LI D, et al.. Miscibility and ordered structures of MgO-ZnO alloys under high pressure[J]. Sci. Rep., 2014, 4:5759-5759.
SARD A. Sol-gel derived Li-Mg co-doped ZnO films:preparation and characterization via XRD, XPS, FESEM[J]. J. Alloys Compds., 2012, 512(1):171-178.
TENG C W, MUTH J F, ZGR ,et al Refractive indices and absorption coefficients of MgxZn1-xO alloys[J]. Appl. Phys. Lett., 2000, 76(8):979-981.
OHTOMO A, KAWASAKI M, KOIDA T, et al.. MgxZn1-xO as a Ⅱ-Ⅳ widegap semiconductor alloy[J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.
TIAN Y, MA X Y, LI D S, et al.. Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon[J]. Appl. Phys. Lett., 2010, 97(6):061111-1-3.
PARK W I, YI G C, JANG H M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-x-MgxO(0 x 0.49) thin films[J]. Appl. Phys. Lett., 2001, 79(13):2022-2024.
SHARMA A K, NARAYAN J, MUTH J F, et al.. Optical and structural properties of epitaxial MgxZn1-xO alloys[J]. Appl. Phys. Lett., 1999, 75(21):3327-3329.
CHOOPUN S, VISPUTE R D, YANG W, et al.. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films[J]. Appl. Phys. Lett., 2002, 80(9):1529-1531.
TANAKA H, FUJITA S, FUJITA S. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy[J]. Appl. Phys. Lett., 2005, 86(19):192911-1-3.
YANG W, HULLAVARAD S S, NAGARAJ B, et al.. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors[J]. Appl. Phys. Lett., 2003, 82(20):3424-3426.
CHEN H X, DING J J, MA S Y. Structural and optical properties of ZnO:Mg thin films grown under different oxygen partial pressures[J]. Physica E, 2010, 42(5):1487-1491.
TIAN C, JIANG D Y, TAN Z D, et al.. Effects of thermal treatment on the MgxZn1-xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors[J]. Mater. Res. Bull., 2014, 60:46-50.
JU Z G, SHAN C X, YANG C L, et al.. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method[J]. Appl. Phys. Lett., 2009, 94(10):101902-1-3.
WANG L K, JU Z G, ZHANG J Y, et al.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices[J]. Appl. Phys. Lett., 2009, 95(13):131113-1-3.
HSU H C, WU C Y, CHENG H M, et al.. Band gap engineering and stimulated emission of ZnMgO nanowires[J]. Appl. Phys. Lett., 2006, 89(1):013101-1-3.
MUHAMMAD M M, MOHAMMAD S L, ZHENG Z, et al.. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device[J]. Appl. Phys. Lett., 2014,105(21):211107-1-3.
BAGNALL D M, CHEN Y F, ZHU Z, et al.. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.
CHEN Y F, TUAN N T, SEGAWA Y, et al.. Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers[J]. Appl. Phys. Lett., 2001, 78(11):1469-1471.
Temperature Dependence of Amplified Spontaneous Emission from Blend Film of F8BT and P3HT
Amplified Spontaneous Emission from The Blend Films of F8BT and P3HT
Structural and Photoluminescence Analysis of Mn-doped ZnO thin Films
The Deposition Mechanism of MgZnO Films by PLD with High Pulse Energy
Application of Atomic Force Microscope in the Characterization of ZnO Thin Films Fabricated by Pulsed Laser Deposition
Related Author
HOU Yan-bing
LIN Tao
QIN Liang
WANG Wei-qian
CHENG Hao
HU Yu-feng
LOU Zhi-dong
TENG Feng
Related Institution
Key Laboratory of Luminescence and Optical Information, Ministry of Education,Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University
National Synchrotron Radiation Laboratory, University of Science and Technology of China
Department of Applied Physics, Hefei University of Technology
Department of Physics, University of Science and Technology of China, Hefei 230026, China