浏览全部资源
扫码关注微信
1. 南京邮电大学有机电子与信息显示国家重点实验室培育基地信息材料与纳米技术研究院,江苏 南京,210046
2. 南京邮电大学江苏国家先进材料协同创新中心,江苏 南京,210023
Received:07 December 2016,
Revised:03 March 2017,
Published:05 July 2017
移动端阅览
闫敏楠, 郑爽, 王丹蓓等. 紫外臭氧处理超薄银修饰ITO电极的高效柔性有机太阳能电池[J]. 发光学报, 2017,38(7): 882-890
YAN Min-nan, ZHENG Shuang, WANG Dan-bei etc. High-efficiency Flexible Organic Solar Cells with UV-ozone Treated Silver Modification ITO Electrode[J]. Chinese Journal of Luminescence, 2017,38(7): 882-890
闫敏楠, 郑爽, 王丹蓓等. 紫外臭氧处理超薄银修饰ITO电极的高效柔性有机太阳能电池[J]. 发光学报, 2017,38(7): 882-890 DOI: 10.3788/fgxb20173807.0882.
YAN Min-nan, ZHENG Shuang, WANG Dan-bei etc. High-efficiency Flexible Organic Solar Cells with UV-ozone Treated Silver Modification ITO Electrode[J]. Chinese Journal of Luminescence, 2017,38(7): 882-890 DOI: 10.3788/fgxb20173807.0882.
以紫外臭氧处理超薄Ag复合MoO
3
或PEDOT:PSS修饰ITO电极的高效柔性有机太阳能电池。通过优化紫外臭氧处理Ag薄膜的时间,提高了以P3HT:PCBM为有源层的器件的功率转换效率,从1.68%(未经过紫外臭氧处理)提高到2.57%(紫外臭氧处理Ag 1 min)。提高的原因推测是紫外臭氧处理形成了AgO
x
薄膜,提高了电荷提取并使器件具有高光学透明度、低串联电阻和优异的表面功函数等一些性能。并且,紫外臭氧处理Ag薄膜与MoO
3
或者PEDOT:PSS复合修饰ITO的器件效率分别得到提高,Ag薄膜与MoO
3
复合修饰ITO的器件效率从2.02%(PET/ITO/MoO
3
)提高到2.97%(PET/ITO/AgO
x
/MoO
3
),Ag薄膜与PEDOT:PSS复合修饰ITO的器件效率从2.01%(PET/ITO/PEDOT:PSS)提高到2.93%(PET/ITO/AgO
x
/PEDOT:PSS)。此外,以PBDTTT-EFT:PC
71
BM为有源层的柔性聚合物太阳能电池效率可达6.21%。基于ITO的柔性光电器件效率的提高主要归于ITO被Ag/PEDOT:PSS或Ag/MoO
3
修饰后功函数的提高。
Highly efficient heterojunction polymer solar cells based on ITO flexible electrode were developed with an UV-ozone-treated ultrathin silver interlayer combined with MoO
3
/PEDOT:PSS as modification materials. By optimizing UV-ozone-treated time of silver thin films
it could improve the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene) (P3HT):[6
6]-phenyl C
61
-butyric acidmethyl ester (PC
61
BM) from 1.68% (without UV-ozone treatment) to 2.57% (Ag with 1 min UV-ozone treatment)
which might be an AgO
x
layer formation that improves hole extraction and several promising characteristics
including high optical transparency
low sheet resistance and superior surface work function. Meanwhile
the devices with UV-ozone treated thin Ag layer together with MoO
3
or PEDOT:PSS improves PCEs from 2.02% for the device with PET/ITO/MoO
3
to 2.97% for the device with PET/ITO/AgO
x
/MoO
3
and from 2.01% to 2.93% for device with PEDOT:PSS. In addition
the PCE of 6.21% of the flexible polymer solar cells based on poly[4
8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1
2-b;4
5-b'] dithiophene-2
6-diyl-alt-(4-(2-ethylhe-xyl)-3-fluorothieno[3
4-b]
thiophene-)-2-carboxylate-2-6-diyl(PBDTTT-EFT):[6
6]-phenyl C
71
-butyric acid methyl ester (PC
71
BM) as an photoactive layer was obtained. The efficiency improvement of the flexible OPV based on ITO is due to the increase of the work function of ITO by ITO/Ag/PEDOT:PSS or MoO
3
composition.
LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nat. Photon., 2012, 6:153-161.
LIN Q F, HUANG H T, JING Y, et al.. Flexible photovoltaic technologies[J]. J. Mater. Chem. C, 2014, 2:1233-1247.
CHEN S L, DAI Y J, ZHAO D W, et al.. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as transparent electrode[J]. Semicond. Sci. Technol., 2016, 31(5):055013.
HU T, LI F, YUAN K, et al.. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly (ethylene glycol) hybrids as cathode buffer layers[J]. ACS Appl. Mater. Interf., 2013, 55763-5770.
吴晓晓, 李福山, 吴薇, 等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔性OLED器件[J]. 发光学报, 2014, 35(4):486-490.WU X X, LI F S, WU W, et al.. Flexible organic light emitting diodes based on double-layered graphene/PEDOT:PSS conductive film[J]. Chin. J. Lumin., 2014, 35(4):486-490. (in Chinese)
YAO K, XIN X K, CHUEN C C, et al.. Enhanced light-harvesting by integrating synergetic microcavity and plasmonic effects for high performance ITO-free flexible polymer solar cells[J]. Adv. Funct. Mater., 2015, 25:567-574.
SONG S M, YANG T L, LIU J J, et al.. Rapid thermal annealing of ITO films[J]. Appl. Surf. Sci., 2011, 257:7061-7064.
CHOI K H, JEONG J A, KANNG J W, et al.. Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells[J]. Sol. Energy. Mater. Sol. Cells, 2009, 93:1248-1255.
STEC H M, HATTON R A. Widely applicable coinage metal window electrodes on flexible polyester substrates applied to organic photovoltaics[J]. ACS Appl. Mater. Interf., 2012, 4:6013-6020.
HAMASHA M M, DHAKAL T, ALZOUBI K, et al.. Stability of ITO thin film on flexible substrate under thermal aging and thermal cycling conditions[J]. J. Disp. Technol., 2012, 8:383-388.
ARMSTRONG N R, VENEMAN P A, RATCLIFF E, et al.. Oxide contacts in organic photovoltaics:characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes[J]. Acc. Chem. Res., 2009, 42:1748-1757.
WANG D B, ZENG W J, CHEN S L, et al.. Effect of a cathode buffer layer on the stability of organic solar cells[J]. Semicond. Sci. Technol., 2015, 30(6):085017.
JOUANE Y, COLIS S, SCHMERBER G, et al.. Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer[J]. Org. Electron., 2013, 14:1861-1868.
LU Z, CHEN X H, ZHOU J P, et al.. Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer[J]. Org. Electron., 2015, 17:364-370.
ZENG W J, BI R, ZHANG H M, et al.. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes[J]. J. Appl. Phys., 2014, 116:224502.
胡雪花, 李福山, 徐胜, 等. 稀释溶剂对PEDOT:PSS薄膜和有机太阳能电池性能的影响[J]. 发光学报,2014, 35(3):322-326. HU X H, LI F S, XU S, et al.. Effect of solvent dilution on preparation of PEDOT:PSS transparent conductive films and device performance of organic solar cells[J]. Chin. J. Lumin., 2014, 35(3):322-326. (in Chinese)
赵丹, 徐登辉, 杨在发, 等. 旋涂法酸处理PEDOT:PSS薄膜对OLED性能的影响[J]. 发光学报,2016, 37(2):174-180.ZHAO D, XU D H, YANG Z F, et al.. Optical and electrical properties of PEDOT:PSS films treated by spin coating with acid for organic light-emitting diodes[J]. Chin. J. Lumin., 2016, 37(2):174-180. (in Chinese)
ZHANG R C, WANG M Y, YANG L Y, et al.. Polymer solar cells using a PEDOT:PSS/Cu nanowires/PEDOT:PSS multilayer as the anode interlayer[J]. Chin. Phys. Lett., 2015, 32(7):077202.
MANDERS J R, TSANG S W, HARTEL M J, et al.. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells[J]. Adv. Funct. Mater., 2013, 23:2993-3001.
JASIENIAK J J, SEIFTER J, JO J, et al.. A solution-processed MoOx anodex interlayer for use within organic photovoltaic devices[J]. Adv. Funct. Mater., 2012, 22:2594-2605.
WU NA, LUO Q, WU Z W, et al.. Influence of electrode interfacial buffer layers on thermal stability of P3HT:PC61BM solar cells[J]. Acta Phys.-Chim. Sinica, 2015, 31(7):1413-1420.
YANG Q Q, YANG D B, ZHAO S L, et al.. UV-ozone-treated MoO3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC71BM photovoltaic devices[J]. Chin. Phys. B, 2014, 23(3):038405.
CHO S P, YEO J S, KIM D Y, et al.. Brush painted V2O5 hole transport layer for efficient and air-stable polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2015, 132:196-203.
CHEN L, XIE C, CHEN Y W. Optimization of the power conversion efficiency of room temperature-fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyelectrolyte as electrode interlayer[J]. Adv. Funct. Mater., 2012, 4:3986-3995.
KOUSKOUSSA B, MORSLI M, BENCHOUK K, et al.. On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer[J]. Phys. Stat. Sol. (a), 2009, 206:311-315.
YAMBEMN S D, LIAO K S, CURRAN S A. Flexible Ag electrode for use in organic photovoltaics[J]. Sol. Energy Mater. Sol. Cells, 2011, 95:3060-3064.
YAMBEMN S D, LIAO K S, ALLEY N J, et al.. Stable organic photovoltaics using Ag thin film anodes[J]. J. Mater. Chem., 2012, 22:6894-6898.
HALDAR A, YAMBEM S D, LIAO K S, et al.. Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide[J]. Thin Solid Films, 2011, 519:6169-6173.
CHEN C W, HSIEH P Y, CHIANG H H, et al.. Top-emitting organic light-emitting devices using surface-modified Ag anode[J]. Appl. Phys. Lett., 2003, 83:5127-5129.
WANG C D, CHOY W C H. Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells[J]. Sol. Energy Mater. Sol. Cells, 2011, 95:904-908.
DAS S, ALFORD T L. Improved efficiency of P3HT:PCBM solar cells by incorporation of silver oxide interfacial layer[J]. J. Appl. Phys., 2014, 116:044905.
ZHANG H M, CHOY W C H. Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices[J]. IEEE Trans. Electron Dev., 2008, 55:2517-2520.
ZHU X L, SUN J X, YU X M, et al.. Investigation of Al-and Ag-based top-emitting organic light-emitting diodes with metal oxides as hole-injection layer[J]. Jpn. J. Appl. Phys., 2007, 46:1033-1036.
WANG Z K, LOU Y H, NAKA S G, et al.. Bias and temperature dependent charge transport in solution-processed small molecular mixed single layer organic light emitting devices[J]. Appl. Phys. Lett., 2011, 98:063302.
JEONG W, LEE J, PARK S Y, et al.. Reduction of collection efficiency of charge carriers with increasing cell size in polymer bulk heterojunction solar cells[J]. Adv. Funct. Mater., 2011, 21(2):343-347.
SNAITH H J. How should you measure your excitonic solar cells[J]. Energy Environ. Sci., 2012, 5(4):6513-6520.
CATTIN L, LARE Y, MAKHA M, et al.. Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers[J]. Sol. Energy Mater. Sol. Cells, 2013, 117:103-109.
WEAVER J F, HOFLUND G B. Surface characterization study of the thermal decomposition of AgO[J]. J. Phys. Chem., 1994, 98:8519-8524.
GAARENSTROOM S W, WINOGRAD N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides[J]. J. Chem. Phys., 1977, 67:3500.
WATERHOUSE G I N, BOWMAKER G A, METSON J B. Oxidation of a polycrystalline silver foil by reaction with ozone[J]. Appl. Surf. Sci., 2001, 183:191-204.
LEE T W, CHUNG Y. Control of the surface composition of a conducting polymer complex film to tune the work function[J]. Adv. Funct. Mater., 2008, 18:2246-2252.
LIU C H, YU X. Silver nanowire-based transparent, flexible, and conductive thin film[J]. Nanoscale Res. Lett., 2011, 6:75-82.
CUI C, WONG W Y, LI Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy Environ. Sci., 2014, 7:2276-2284.
WANG D, ZHANG F J, LI L L, et al.. Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells[J]. RSC Adv., 2014, 4:48724-48733.
0
Views
202
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution