浏览全部资源
扫码关注微信
大连工业大学 光子学研究所,辽宁 大连,116034
Received:07 December 2016,
Revised:21 January 2017,
Published:05 July 2017
移动端阅览
程志远, 张彦杰, 于晶杰等. 单一基质双光色Ba<sub>10-<em>x</em></sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>:<em>x</em>Eu<sup>2+</sup>荧光粉的两步法制备与光谱调控[J]. 发光学报, 2017,38(7): 874-881
CHENG Zhi-yuan, ZHANG Yan-jie, YU Jing-jie etc. Preparation of Eu<sup>2+</sup> Activated Barium Phosphosilicate Phosphors with Two-color Emission by A New Two-step Method[J]. Chinese Journal of Luminescence, 2017,38(7): 874-881
程志远, 张彦杰, 于晶杰等. 单一基质双光色Ba<sub>10-<em>x</em></sub>(PO<sub>4</sub>)<sub>4</sub>(SiO<sub>4</sub>)<sub>2</sub>:<em>x</em>Eu<sup>2+</sup>荧光粉的两步法制备与光谱调控[J]. 发光学报, 2017,38(7): 874-881 DOI: 10.3788/fgxb20173807.0874.
CHENG Zhi-yuan, ZHANG Yan-jie, YU Jing-jie etc. Preparation of Eu<sup>2+</sup> Activated Barium Phosphosilicate Phosphors with Two-color Emission by A New Two-step Method[J]. Chinese Journal of Luminescence, 2017,38(7): 874-881 DOI: 10.3788/fgxb20173807.0874.
采用两步法成功合成了单一基质双光色Ba
10-x
(PO
4
)
4
(SiO
4
)
2
:
x
Eu
2+
荧光粉,研究了稀土离子占据不同的晶格格位对荧光粉光谱特性的影响。结果表明:两步法合成的荧光粉发射光谱由414 nm的蓝光波带和504 nm绿光波带两种光色组成,而传统的高温固相法制备的荧光粉只有504 nm处的绿光发射。荧光粉发光性能与Eu
2+
离子在磷灰石晶体结构中占据的晶格位置关系十分密切。两步法荧光粉双光色的形成主要是由于在第一步氧化气氛合成过程中Eu
3+
离子取代了基质结构中的Ba
Ⅰ
和Ba
Ⅱ
两个格位的Ba
2+
离子;在第二步还原过程结束后,Eu
2+
离子仍然占据着两种格位,从而形成了两种具有不同配位环境的发光中心。此外,双发射峰的相对强度能够通过Eu
2+
离子对Ba
Ⅰ
格位的取代率而调节,进而实现光谱的调变。
A series of single phase Eu
2+
-activated barium phosphosilicates phosphors
Ba
10-
x
(PO
4
)
4
(SiO
4
)
2
:
x
Eu
2+
with apatite structure were successfully synthesized by a novel two-step method and they exhibited interesting two-color emission at 414 nm (blue) and 504 nm (green)
respectively. As a significant contrast
the phosphors prepared
via
traditional solid state reaction method
only showed single-color emission at 504 nm. The luminescent properties of these as-prepared phosphors are strongly dependent on the substitute sites of Eu
2+
in apatite crystal structure and the two-color emission was proved due to the occupation of Eu
3+
on two lattice sites of Ba
Ⅰ
and Ba
Ⅱ
in host material. Furthermore
the relative intensity of two emission peaks can be tuned readily
via
adjusting the substitution of Ba
Ⅰ
site by Eu
2+
.
HPPE H A. Recent developments in the field of inorganic phosphors[J]. Angew. Chem. Int. Ed., 2009, 48(20):3572-3582.
XIE R J, HIROSAKI N. Silicon-based oxynitride and nitride phosphors for white LEDs-a review[J]. Sci. Technol. Adv. Mater., 2007, 8(7-8):588-600.
VANITHAKUMARI S C, NANDA K K. A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors[J]. Adv. Mater., 2009, 21(35):3581-3584.
LIN C C, LIU R S. Advances in phosphors for light-emitting diodes[J]. J. Phys. Chem. Lett., 2011, 2(11):1268-1277.
KIM J S, JEON P E, CHOI J C, et al.. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor[J]. Appl. Phys. Lett., 2004, 84(15):2931-2933.
DAICHO H, IWASAKI T, ENOMOTO K, et al.. A novel phosphor for glareless white light-emitting diodes[J]. Nat. Commun., 2012, 3:1132.
WATANABE H, WADA H, SEKI K, et al.. Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors[J]. J. Electrochem. Soc., 2008, 155(3):F31-F36.
NISHIDA T, BAN T, KOBAYASHI N. High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors[J]. Appl. Phys. Lett., 2003, 82(22):3817-3819.
TAKAHASHI K, HIROSAKI N, XIE R J, et al.. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode[J]. Appl. Phys. Lett., 2007, 91(9):091923-1-3.
QIAN F J, FU R L, AGATHOPOULOS S, et al.. Synthesis and luminescence properties of a broad-band red phosphor Ca3Si2O7:Eu2+ for warm white light-emitting diodes[J]. J. Lumin., 2012, 132(1):71-75.
LI K, GENG D L, SHANG M M, et al.. Color-tunable luminescence and energy transfer properties of Ca9Mg(PO4)6F2:Eu2+, Mn2+ phosphors for UV-LEDs[J]. J. Phys. Chem. C, 2014, 118(20):11026-11034.
YU J J, GONG W T, ZHANG Y J, et al.. White-light-emitting diode using a single-phase full-color (Ba, Sr)10(PO4)4(SiO4)2:Eu2+ phosphor[J]. J. Lumin., 2014, 147:250-252.
RAVINDRANADH K, BABU B, PUSHPA MANJARI V, et al.. Optical and structural properties of undoped and Mn2+ doped Ca-Li hydroxyapatite nanopowders using mechanochemical synthesis[J]. J. Lumin., 2015, 159:119-127.
CHEN X, DAI P P, ZHANG X T, et al.. A highly efficient white light (Sr3, Ca, Ba)(PO4)3Cl:Eu2+, Tb3+, Mn2+ phosphor via dual energy transfers for white light-emitting diodes[J]. Inorg. Chem., 2014, 53(7):3441-3448.
JIAO M M, JIA Y C, LV W, et al.. Structure and photoluminescence properties of novel Ca2NaSiO4F:Re (Re=Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs[J]. J. Mater. Chem. C, 2014, 2(21):4304-4311.
HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes[J]. J. Phys. Chem. C, 2011, 115(5):2349-2355.
GUO C, LUAN L, DING X, et al.. Luminescent properties of Sr5(PO4)3Cl:Eu2+, Mn2+ as a potential phosphor for UV-LED-based white LEDs[J]. Appl. Phys. B, 2009, 95(4):779-785.
HAO Z D, ZHANG J H, ZHANG X, et al.. White light emitting diode by using -Ca2P2O7:Eu2+, Mn2+ phosphor[J]. Appl. Phys. Lett., 2007, 90(26):261113-1-3.
YANG W J, CHEN T M. Ce3+/Eu2+ codoped Ba2ZnS3:a blue radiation-converting phosphor for white light-emitting diodes[J]. Appl. Phys. Lett., 2007, 90(17):171908-1-3.
K. N. SHINDE K N, DHOBLE S J, KUMAR A. Eu3+ activated M6AlP5O20 (M=Sr/Ba/Mg) novel red phosphors[J]. J. Lumin., 2011, 131(9):1939-1944.
HAN J Y, IM W B, KIM D, et al.. New full-color-emitting phosphor, Eu2+-doped Na2-xAl2-xSixO4 (0 x 1), obtained using phase transitions for solid-state white lighting[J]. J. Mater. Chem., 2012, 22(12):5374-5381.
WU C Q, ZHANG J C, FENG P F, et al.. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor:Sr5(PO4)3Cl:Eu2+[J]. J. Lumin., 2014, 147:229-234.
YU J J, GONG W T, XIAO Z G, et al.. Spectral structure of barium-phosphate-silicate phosphor Ba10(PO4)4(SiO4)2:EuM+[J]. J. Lumin., 2012, 132(11):2957-2960.
KOTTAISAMY M, JAGANNATHAN R, JEYAGOPAL P, et al.. Eu2+ luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+ and Ba2+, and X is F-, Cl-, Br- and OH-[J]. J. Phys. D:Appl. Phys., 1994, 27(10):2210-2215.
NTZOLD D, WULFF H, HERZOG G. Structural and optical properties of the system (Ca, Sr, Eu)5(PO4)3Cl[J]. Phys. Stat. Sol.(b), 1995, 191(1):21-30.
RAMESH R, JAGANNATHAN R. Optical properties of Ce3+ in self-assembled strontium chloro(hydroxy)apatite nanocrystals[J]. J. Phys. Chem. B, 2000, 104(35):8351-8360.
SONG Y H, YOU H P, YANG M, et al.. Facile synthesis and luminescence of Sr5(PO4)3Cl:Eu2+ nanorod bundles via a hydrothermal route[J]. Inorg. Chem., 2010, 49(4):1674-1678.
AL-KATTAN A, DUFOUR P, DEXPERT-GHYS J, et al.. Preparation and physicochemical characteristics of luminescent apatite-based colloids[J]. J. Phys. Chem. C, 2010, 114(7):2918-2924.
TAO Z X, HUANG Y L, SEO H J. Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4)[J]. Dalton Trans., 2012, 42(6):2121-2129.
KIM D, PARK D, OH N, et al.. Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2 (RE=Ce, Eu, and Tb):site selective crystal field effect[J]. Inorg. Chem., 2015, 54(4):1325-1336.
XIA Z G, MOLOKEEV M S, IM W B, et al.. Crystal structure and photoluminescence evolution of La5(Si2+xB1-x)(O13-xNx):Ce3+ solid solution phosphors[J]. J. Phys. Chem. C, 2015, 119(17):9488-9495.
BOYER L, PIRIOU B, CARPENA J, et al.. Study of sites occupation and chemical environment of Eu3+ in phosphate-silicates oxyapatites by luminescence[J]. J. Alloys Compd., 2000, 311(2):143-152.
BACHMANN V, RONDA C, OECKLER O, et al.. Color point tuning for (Sr, Ca, Ba)Si2O2N2:Eu2+ for white light LEDs[J]. Chem. Mater., 2009, 21(2):316-325.
LU S Z, ZHANG J S. Study on UV excitation properties of Eu3+-doped rare-earth phosphates[J]. J. Lumin., 2007, 122-123:500-502.
NAGPURE I M, PITALE S S, COETSEE E, et al.. Lattice site dependent cathodoluminescence behavior and surface chemical changes in a Sr5(PO4)3F host[J]. Phys. B:Condens. Matter, 2012, 407(10):1505-1508.
BOUZIDI C, FERHI M, ELHOUICHET H, et al.. Spectroscopic properties of rare-earth (Eu3+, Sm3+) doped BaWO4 powders[J]. J. Lumin., 2015, 161:448-455.
MA P C, SONG Y H, SHENG Y, et al.. Single-component and white light-emitting phosphor BaAl2Si2O8:Dy3+, Eu3+ synthesis, luminescence, energy transfer, and tunable color[J]. Opt. Mater., 2016, 60:196-203.
ZHANG Z W, LIU L, SONG S T, et al.. A novel red-emitting phosphor Ca9Bi(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes[J]. Curr. Appl. Phys., 2015, 15(3):248-252.
0
Views
44
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution