浏览全部资源
扫码关注微信
1. 闽南师范大学 物理与信息工程学院,福建 漳州,363000
2. 广东技术师范学院 光电工程学院,广东 广州,510665
Received:30 December 2016,
Revised:14 February 2017,
Published:05 July 2017
移动端阅览
戴军, 陈景东, 何影记等. 铜掺杂氧化锌纳米棒的非线性光学响应竞争特性[J]. 发光学报, 2017,38(7): 855-861
DAI Jun, CHEN Jing-dong, HE Ying-ji etc. Competition in Nonlinear Optical Properties of Cu-doped ZnO Nanorods[J]. Chinese Journal of Luminescence, 2017,38(7): 855-861
戴军, 陈景东, 何影记等. 铜掺杂氧化锌纳米棒的非线性光学响应竞争特性[J]. 发光学报, 2017,38(7): 855-861 DOI: 10.3788/fgxb20173807.0855.
DAI Jun, CHEN Jing-dong, HE Ying-ji etc. Competition in Nonlinear Optical Properties of Cu-doped ZnO Nanorods[J]. Chinese Journal of Luminescence, 2017,38(7): 855-861 DOI: 10.3788/fgxb20173807.0855.
利用飞秒脉冲激光激发Cu掺杂ZnO纳米棒,研究其特有的非线性光学性质和激发机制。在激发波长为750 nm的荧光光谱中,二次谐波峰非常弱,几乎可以忽略,存在非常强的激子发光峰和Cu掺杂导致缺陷发光峰。激发强度的增大会导致这两个发光峰强度呈非线性增大,激子发光峰位产生明显红移,而缺陷发光峰位没有变化。进一步增大激发强度,缺陷发光峰强度会出现饱和甚至有所下降,而激子发光峰强度持续增大。当激发波长增加到760 nm时,从样品的荧光光谱可以清楚地识别到二次谐波峰和激子发光峰以及缺陷发光峰并存。随着激发波长的进一步增加,二次谐波强度不断增大,而激子发光峰和缺陷发光峰的强度却随之下降。当激发波长为790 nm和800 nm时,未发现激子发光峰和缺陷发光峰,非线性光谱以二次谐波为主导。研究结果表明,通过选择合适的激发波长和激发强度,可以实现发光颜色的转变,使得Cu掺杂ZnO纳米棒在全光显示方面具有潜在的发展前景。
In order to study the unique nonlinear optical properties and excitation mechanism
Cu-doped zinc oxide nanorods were excited by femtosecond pulsed laser. Under the excitation of 750 nm
the second harmonic peak is almost ignore meanwhile only the exciton peak and Cu doping related peak. The increase of the excitation intensity leads to a nonlinear increase of the intensity of the two emission peaks. The position of exciton peak exhibits a red shift meanwhile the position of defect peak does not move. If the excitation intensity further increases
the intensity of the defect related emission will decrease and the intensity of the exciton emission will increase continuously. When the excitation wavelength increases to 760 nm
the fluorescence spectrum of the sample can be clearly recognized the coexistence of the second harmonic peak and the exciton emission as well as the defect related emission. With the increasing of the excitation wavelength
the intensity of the second harmonic increases and the intensity of exciton emission and defect related emission decrease. At the excitation wavelengths of 790 nm and 800 nm
the exciton emission and defect related emission cannot be found
and the nonlinear spectrum is dominated by second harmonic generation. By selecting the appropriate excitation wavelength and excitation intensity
the transition of the luminescent color display can be realized
which makes Cu-doped ZnO nanorods as the potential of all-optical display.
BAGNALL D M, CHEN Y F, ZHU Z, et al.. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.
TANG Z K, WONG G K L, YU P, et al.. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett., 1998, 72(25):3270-3272.
李朝辉, 戴俊, 吴春霞, 等. 氧化锌碳纤维复合结构制备及其紫外光响应性能研究[J]. 发光学报, 2016, 37(5):543-547. LI Z H, DAI J, WU C X, et al.. Hybrid structures of ZnO nanorods/carbon fiber and their application on ultraviolet photodetector[J]. Chin. J. Lumin., 2016, 37(5):543-547. (in Chinese)
ANDERSEN S V, VANDALON V, BOSCH R H E C, et al.. Interaction between O2 and ZnO films probed by time-dependent second-harmonic generation[J]. Appl. Phys. Lett., 2014, 104(5):051602-1-4.
DEV A, ELSHAER A, VOSS T. Optical applications of ZnO nanowires[J]. IEEE J Sel. Top. Quant. Electron., 2011, 17(4):896-906.
LIU X, WU X H, CAO H, et al.. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition[J]. J. Appl. Phys., 2004, 95(6):3141-3147.
HE H P, TANG H P, YE Z Z, et al.. Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods[J]. Appl. Phys. Lett., 2007, 90(2):023104-1-3.
YANG Y, GUO W, WANG X Q, et al.. Size dependence of dielectric constant in a single pencil-like ZnO nanowire[J]. Nano Lett., 2012, 12(4):1919-1922.
申德振, 梅增霞, 梁会力, 等. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1):1-60. SHEN D Z, MEI Z X, LIANG H L, et al.. ZnO-based matierial, heterojunction and photoelctronic device[J]. Chin. J. Lumin., 2014, 35(1):1-60. (in Chinese)
TOMAKIN M. Structural and optical properties of ZnO and Al-doped ZnO microrods obtained by spray pyrolysis method using different solvents[J]. Superl. Microstruct., 2012, 51(3):372-380.
DUAN L, LIN B X, ZHANG W Y, et al.. Enhancement of ultraviolet emissions from ZnO films by Ag doping[J]. Appl. Phys. Lett., 2006, 88(23):232110-1-3.
KURIAKOSE S, SATPATI B, MOHAPATRA S. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures[J]. Phys. Chem. Chem. Phys., 2015, 17(38):25172-25181.
LUNKENBEIN T, SCHUMANN J, BEHRENS M, et al.. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angew. Chem. Int. Ed., 2015, 54(15):4544-4552.
MHAMDI A, MIMOUNI R, AMLOUK A, et al.. Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films[J]. J. Alloys Compd., 2014, 610:250-257.
ALLABERGENOV B, CHUNG S H, JEONG S M, et al.. Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films[J]. Opt. Mater. Express, 2013, 3(10):1733-1741.
LUPAN O, PAUPORT T, LE BAHERS T, et al.. Wavelength-emission tuning of ZnO nanowire-based light-emitting diodes by Cu doping:experimental and computational insights[J]. Adv. Funct. Mater., 2011, 21(18):3564-3572.
李爱侠, 毕红, 刘艳美, 等. Co, Cu共掺杂ZnO薄膜的结构及发光特性[J]. 发光学报, 2008, 29(2):289-293. LI A X, BI H, LIU Y M, et al.. Structure and optical properties of (Co, Cu)-codoped ZnO thin films[J]. Chin. J. Lumin., 2008, 29(2):289-293. (in Chinese)
陈宝, 孟祥东, 施志明, 等. (Li, Cu)掺杂ZnO薄膜的发光性质[J]. 发光学报, 2011, 32(3):245-250. CHEN B, MENG X D, SHI Z M, et al.. Luminescence properties of (Li, Cu)-doped ZnO thin films[J]. Chin. J. Lumin., 2011, 32(3):245-250. (in Chinese)
杨帆, 韦敏, 邓宏, 等. 铜掺杂氧化锌薄膜阻变特性的研究[J]. 发光学报, 2014, 35(5):604-607. YANG F, WEI M, DENG H, et al.. Characteristics of copper doped zinc oxide thin film resistive switching[J]. Chin. J. Lumin., 2014, 35(5):604-607. (in Chinese)
王晓飞, 吴雪梅, 诸葛兰剑. Zn1-xCuxO薄膜的结构和光学性质[J]. 功能材料, 2008, 39(2):191-193. WANG X F, WU X M, ZHUGE L J. The structural and optical properties of Zn1-xCuxO films[J]. J. Funct. Mater., 2008, 39(2):191-193. (in Chinese)
曲盛薇, 唐鑫, 吕海峰, 等. Cu掺杂ZnO薄膜的光学性质[J]. 发光学报, 2010, 31(2):204-208. QU S W, TANG X, LV H F, et al.. Optical properties of Cu-doped thin ZnO films[J]. Chin. J. Lumin., 2010, 31(2):204-208. (in Chinese)
DAI J, ZENG J H, LAN S, et al.. Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods[J]. Opt. Express, 2013, 21(8):10025-10038.
王马华, 朱光平, 居勇峰, 等. 纳米氧化锌中三光子吸收与倍频效应致光辐射特性[J]. 发光学报, 2015, 36(6):617-622. WANG M H, ZHU G P, JU Y F, et al.. Emission characteristics of crown-like ZnO nanocrystals induced by three-photon absorption and second harmonic generation effect[J]. Chin. J. Lumin., 2015, 36(6):617-622. (in Chinese)
DAS S K, BOCK M, O'NEILL C, et al.. Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses[J]. Appl. Phys. Lett., 2008, 93(18):181112-1-3.
JANG J I, PARK S, FRAZER N L, et al.. Strong P-band emission and third harmonic generation from ZnO nanorods[J]. Solid State Commun., 2012, 152(14):1241-1243.
DAI J, YUAN M H, ZENG J H, et al.. Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods[J]. Appl. Opt., 2014, 53(2):189-194.
KULYK B, ESSAIDI Z, KAPUSTIANYK V, et al.. Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on -BBO and LiNbO3[J]. Opt. Commun., 2008, 281(24):6107-6111.
URBAN B E, NEOGI P B, BUTLER S J, et al.. Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles[J]. J. Biophoton., 2012, 5(3):283-291.
DAI J, YUAN M H, ZENG J H, et al.. Three-photon-induced blue emission with narrow bandwidth from hot flower-like ZnO nanorods[J]. Opt. Express, 2015, 23(22):29231-29244.
ZHANG C F, ZHANG F, QIAN S X, et al.. Multiphoton absorption induced amplified spontaneous emission from biocatalyst-synthesized ZnO nanorods[J]. Appl. Phys. Lett., 2008, 92(23):233116-1-3.
0
Views
125
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution