nanocrystals were prepared by melt-quenching method with subsequent heat treatment. The structure and luminescence properties of the as-made glass and glass-ceramics were investigated by X-ray diffraction(XRD)
transmission electron microscope(TEM)
transmittance spectra
photoluminescence spectra
fluorescence lifetime and X-ray excited luminescence spectra(XEL). The XRD results show that the precipitated crystalline in the glass matrix is SrF
2
nanocrystal. The diffraction peaks become obvious and the crystal gradually increases with the increasing of the heat treatment temperature and time. Under 376 nm light and X-ray
much more intense emissions are observed in Tb
3+
doped oxyfluoride glass ceramics containing SrF
2
nanocrystals compared with the as-made glass. With the increasing of the heat-treatment temperature and time
the emission intensities are enhanced.
关键词
Keywords
references
WANG H Q, BATENTSCHUK M, OSVET A, et al.. Rare-earth ion doped up-conversion materials for photovoltaic applications[J]. Adv. Mater., 2011, 23(22-23):2675-2680.
VERMA R K, RAI D K, RAI S B. Investigation of structural properties and its effect on optical properties:Yb3+/Tb3+ codoped in aluminum silicate glass[J]. J. Alloys Compd., 2011, 509(18):5591-5595.
DA SILVA J E C, DE S G F, SANTA-CRUZ P A. White light simulation by up-conversion in fluoride glass host[J]. J. Alloys Compd., 2002, 344(1-2):260-263.
王倩, 张为欢, 欧阳绍业, 等. Dy3+-Tb3+掺杂氟氧碲酸盐玻璃的光谱性能研究[J]. 光子学报, 2015, 44(1):0116004. WANG Q, ZHANG W H, OUYANG S Y, et al.. Luminescence properties of oxyfluoride tellurite glasses doped with Dy3+ ions and Tb3+ ions[J]. Acta Photon. Sinica, 2015, 44(1):0116004. (in Chinese)
SUN X Y, YU X G, WANG W F, et al.. Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3scintillating glasses[J]. J. Non-Cryst. Solids, 2013, 379:127-130.
CAO J K, WANG X Y, LI X M, et al.. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals[J]. J. Lumin., 2016, 170:207-211.
ZHANG Y, LV J W, DING N, et al.. Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration[J]. J. Non-Cryst. Solids, 2015, 423-424:30-34.
WANG Y H, OHWAKI J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion[J]. Appl. Phys. Lett., 1993, 63(24):3268-3270.
DEJNEKA M J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics[J]. J. Non-Cryst. Solids, 1998, 239(1-3):149-155.
MORTIER M, PATRIARCHE G. Structural characterization of transparent oxyfluoride glass-ceramics[J]. J. Mater. Sci., 2000, 35(19):4849-4856.
FU J, PARKER J M, FLOWER P S, et al.. Eu2+ ions and CaF2-containing transparent glass-ceramics[J]. Mater. Res. Bull., 2002, 37(11):1843-1849.
TANABE S, HAYASHI H, HANADA T, et al.. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals[J]. Opt. Mater., 2002, 19(3):343-349.
ZHANG Y, ZHENG T, DING N, et al.. Luminescence properties of Tb3+ doped oxyfluoride scintillating glass containing CaF2[C]. Proceedings of 2015International Conference on Material Engineering and Mechanical Engineering, Hangzhou, Zhejiang, China, 2016:1433-1440.
HUANG L H, QIN G S, ARAI Y, et al.. Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals[J]. J. Appl. Phys., 2007, 102(9):093506-1-8.
FU J, PARKER J M, FLOWER P S, et al.. Eu2+ ions and CaF2-containing transparent glass-ceramics[J]. Mater. Res. Bull., 2002, 37(11):1843-1849.
HUANG L H, JIA S J, LI Y, et al.. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2015, 788:111-115.
BUENO C, BUCHANAN R, BERGER H. Luminescent glass design for high-energy real-time radiography[J]. Proceedings of SPIE 1327, Properties and Characteristics of Optical Glass Ⅱ, San Diego, 1990, 1327:72-91.
SUN X Y, JIANG D G, WANG W F, et al.. Luminescence properties of B2O3-GeO2-Gd2O3 scintillating glass doped with rare-earth and transition-metal ions[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2013, 716:90-95.