浏览全部资源
扫码关注微信
可调谐激光技术国家级重点实验室 哈尔滨工业大学,黑龙江 哈尔滨,150001
Received:12 April 2017,
Revised:06 May 2017,
Published:05 July 2017
移动端阅览
马欲飞, 佟瑶, 何应等. 石英增强光声光谱技术研究进展[J]. 发光学报, 2017,38(7): 839-848
MA Yu-fei, TONG Yao, HE Ying etc. Research Progress of Quartz-enhanced Photoacoustic Spectroscopy[J]. Chinese Journal of Luminescence, 2017,38(7): 839-848
马欲飞, 佟瑶, 何应等. 石英增强光声光谱技术研究进展[J]. 发光学报, 2017,38(7): 839-848 DOI: 10.3788/fgxb20173807.0839.
MA Yu-fei, TONG Yao, HE Ying etc. Research Progress of Quartz-enhanced Photoacoustic Spectroscopy[J]. Chinese Journal of Luminescence, 2017,38(7): 839-848 DOI: 10.3788/fgxb20173807.0839.
石英增强光声光谱(QEPAS)技术是一种新颖的气体探测技术,具有体积小、灵敏度高等优点,是痕量气体检测技术的研究热点。本文对QEPAS技术的基本原理、发展历史及发展现状进行了综述,并对多种不同结构的QEPAS系统发展情况进行了介绍,最后对该技术的发展前景进行了展望。
Quartz-enhanced photoacoustic spectroscopy(QEPAS) is a new technique for gas detection. It is revealed that QEPAS holds merits in many aspects
including small volume and high sensitivity. Therefore
it has become the hot researching topic of trace gas detection technique. This paper introduces the QEPAS technique principle and the structures of several different QEPAS systems. Furthermore
the development prospect of this kind technique is also predicted.
BROWN R J C, MILTON M J T. Analytical techniques for trace element analysis:an overview[J]. Trends Anal. Chem., 2005, 24(3):266-274.
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326:123-125.
LOGAN J A, PRATHER M J, WOFSY S C, et al.. Tropospheric chemistry:a global perspective[J]. J. Geophys. Res., 1981, 86:7210-7254.
JOLY L, DECARPENTERIE T, DUMELI N, et al.. Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 mm[J]. Appl. Phys. B, 2011, 103:717-723.
ARSLANOV D D, SWINKELS K, CRISTESCU S M, et al.. Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy[J]. Opt. Express, 2011, 19(24):24078-24089.
MOESKOPS B W M, NAUS H, CRISTESCU S M, et al.. Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath[J]. Appl. Phys. B, 2006, 82:649-654.
MITSUI T, MIYAMURA M, MATSUNAMI A, et al.. Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry[J]. Clinic. Chem., 1997, 43:1993-1995.
BRADSHAW J L, BRUNO J D, LASCOLA K M, et al.. Small low-power consumption co-sensor for post-fire cleanup aboard spacecraft[J]. SPIE, 2011, 8032:80320D.
NELSON D D, MCMANUS B, URBANSKI S, et al.. High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors[J]. Spectrochim. Acta Part A, 2004, 60:3325-3335.
MOHN J, TUZSON B, MANNINEN A, et al.. Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy[J]. Atmosph. Meas. Tech., 2012, 5:813-838.
VANDEROVER J, WANG W, OEHLSCHLAEGER M A. A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy[J]. Appl. Phys. B, 2011, 103:959-966.
刘文清, 崔志成, 刘建国,等.大气痕量气体测量的光谱学和化学技术[J]. 量子电子学报, 2004, 21(2):202-210. LIU W Q, CUI Z C, LIU J G, et al.. Spectroscopic and chemical techniques for the measurement of atmospheric trace gases[J].Chin. J. Quant. Electron., 2004, 21(2):202-210. (in Chinese)
WAGNER S, KLEIN M, KATHROTIA T, et al.. Absolute, spatially resolved, in situ co profiles in atmospheric laminar counter-flow diffusion flames using 2.3 lm TDLAS[J]. Appl. Phys. B, 2012, 109:533-540.
KRZEMPEK K, LEWICKI R, NHLE L, et al.. Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane[J]. Appl. Phys. B, 2012, 106:251-255.
BELL A G. On the production and reproduction of sound by light:the photophone[J]. Am. J. Sci., 1880, 20:305-324.
KREUZER L B. Ultralow gas concentration infrared absorption spectroscopy[J]. J. Appl. Phys.,1971, 42:2934-2943.
NIU M S, LIU Q, LIU K, et al.. Temperature-dependent photoacoustic spectroscopy with a T-shaped photoacoustic cell at low temperature[J]. Opt. Commun., 2013, 287:180-186.
NAVAS M J, JIMENEZ A M, ASUERO A G. Human biomarkers in breath by photoacoustic spectroscopy[J]. Clinic. Chim. Acta, 2012, 413(15-16):1171.
ROCHA M V, STHEL M S, SILVA M G, et al.. Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines[J]. Appl. Phys. B, 2012, 106:701-706.
ELIA A, LUGARAP M, FRANCO C D, et al.. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J]. Sensors, 2009, 9:9616-9628.
KOSTEREV A A, BAKHIRKIN YU A, CURL R F, et al.. Quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2002, 27(21):1902-1904.
ZHENG H D, YIN X K, ZHANG G F, et al.. Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire[J]. Appl. Phys. Lett., 2015, 107:221903.
LIU K, LI J, WANG L, et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Appl. Phys. B, 2009, 94:527-533.
DONG L, WRIGHT J, PETERS B, et al.. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen[J]. Appl. Phys. B, 2012, 107:459-467.
JAHJAH M, VICET A, ROUILLARD Y. A QEPAS based methane sensor with a 2.35m antimonide laser[J]. Appl. Phys. B, 2012, 106:483-489.
SPAGNOLO V, PATIMISCO P, BORRI S, et al.. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt. Lett., 2012, 37(21):4461-4463.
KOSTEREV A A, TITTEL F K, SEREBRYAKOV D V, et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev. Sci. Instrum., 2005, 76:043105.
ROTHMAN L S, GORDON I E, BARBE A, et al..The HITRAN 2008 molecular spectroscopic database[J]. J. Quant. Spectrosc. Radiat. Transfer, 2009, 110:533-572.
WERLE P, HERING P, LAY J P, et al.. Diode-laser sensors for in situ gas analysis in laser in environmental and life science[J]. Eds. Springer-Verlag:NewYork, 2004, 11:223-233.
FAIST J, CAPASSO F, SIVCO D L, et al.. Quantum cascade laser[J]. Science, 1994, 264:553-556.
CURL R F, CAPASSO F, GMACHL C, et al.. Quantum cascade lasers in chemical physics[J]. Chem. Phys. Lett., 2010, 487:1-18.
YAO Y, HOFFMAN A J, GMACHL C F. Mid-infrared quantum cascade lasers[J]. Nat. Photon., 2012, 6:432-439.
RAZEGHI M, LU Q Y, BANDYOPADHYAY N, et al.. Quantum cascade lasers:from tool to product[J]. Opt. Express, 2015, 23(7):8462-8475.
TITTEL F, KOSTEREV A A, SEREBRYAKOV D, et al.. Application of quartz tuning fork in spectroscopic gas sensing[J]. Rev. Sci. Instrum., 2005, 76(4):043105-043109.
LIU K, GUO X, YI H, et al.. Off-beam quartz-enhanced photoacoustic spectroopy[J].Opt. Lett., 2009(10):1594-1596.
YI H M, LIU K, CHEN W D, et al.. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2011, 36(4):481-483.
CAO Y C, JIN W, HO L H, et al..Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt. Lett., 2012, 37(2):214-216.
MA Y F, LEWICKI R, RAZEGHI M, et al.. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Opt. Express, 2013, 21(1):1008-1019.
BORRI S, PATIMISCO P, SAMPAOLO A, et al.. Terahertz quartz-enhanced photoacoustic sensor[J]. Appl. Phys. Lett., 2013, 103(2):021105.
DONG L, WU H P, ZHENG H D, et al.. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J]. Opt. Lett., 2014, 39(8):2479-2482.
BORRI S, PATIMISCO P, GALLI I, et al.. Intracavity quartz-enhanced photoacoustic sensor[J]. Appl. Phys. Lett., 2014, 104(9):091114.
MA Y F, YU X, YU G, et al.. Multi-quartz enhanced photoacoustic spectroscopy[J]. Appl. Phys. Lett., 2015, 107(2):21106.
PATIMISCO P, BORRI S, SAMPAOLO A, et al.. A quartz enhanced photoacoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. Analyst, 2014, 139:2079-2087.
SAMPAOLO A, PATIMISCO P, DONG L, et al.. Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes[J]. Appl. Phys. Lett., 2015, 107:231102.
0
Views
391
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution