HAN Hui-zhen, DENG Zhen-bo, HU Yu-feng. Organic Electrical Bistable Devices Based on Poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenyl vinylene]/poly(ethylene glycol) Films[J]. Chinese Journal of Luminescence, 2017,38(6): 793-798
HAN Hui-zhen, DENG Zhen-bo, HU Yu-feng. Organic Electrical Bistable Devices Based on Poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenyl vinylene]/poly(ethylene glycol) Films[J]. Chinese Journal of Luminescence, 2017,38(6): 793-798 DOI: 10.3788/fgxb20173806.0793.
Organic Electrical Bistable Devices Based on Poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenyl vinylene]/poly(ethylene glycol) Films
Organic electrical bistable devices based on MEH-PPV (poly[2-methoxy-5-(20-ethyl-hexyloxy)-1
4-phenyl vinylene]) and PEG[poly(ethylene glycol)]
bilayer films were demonstrated. The structure of the device is Al/MEH-PPV/PEG/ITO
and we optimize the device by changing the molecular weight
concentration and annealing temperature of PEG film. The electrical current ON/OFF ratio of the optimized device is over 10
3
between the high-conducting state (ON state) and low-conducting state (OFF state). The device remains in the high resistance state below the threshold voltage of 2.5 V and the device resistance abruptly decreases due to the trap-controlled space charge limit current
leading to a high conductivity state. The SEM measurements and I-
V
curve fitting indicate that the phase separation induced electrical charge trapping plays an important role for the electrical bistable behavior of the devices.
关键词
Keywords
references
MA L, PYO S, OUYANG J, et al.. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system[J]. Appl. Phys. Lett., 2003, 82(9):1419.
SCOTT J C, BOZANO L D. Nonvolatile memory elements based on organic materials[J]. Adv. Mater., 2007, 19(11):1452-1463.
KO S H, YOO C H, KIM T W. Electrical bistabilities and memory stabilities of organic bistable devices utilizing C60 molecules embedded in a polymethyl methacylate matrix with an Al2O3 blocking layer[J]. J. Electrochem. Soc., 2012, 159(8):G93-G96.
LEE P T, CHANG T Y, CHEN S Y. Tuning of the electrical characteristics of organic bistable devices by varying the deposition rate of Alq3 thin film[J]. Org. Electron., 2008,9(5):916-920.
LIU G, JIN Z, ZHANG Z-g, et al.. Realization of nonvolatile organic memory device without using semiconductor[J]. Appl. Phys. Lett., 2014,.104(2):023303.
LI J, TANG A, LI X, et al.. Negative differential resistance and carrier transport of electrically bistable devices based on poly (N-vinylcarbazole)-silver sulfide composites[J]. Nanoscale Res. Lett., 2014, 9(1):1-5.
RAMANA C V, MOODLEY M, KUMAR A, et al.. Charge carrier transport mechanism based on stable low voltage organic bistable memory device[J]. J. Nanosci. Nanotechnol., 2015,15(5):3934-3938.
YOOK K S, LEE J Y. Organic materials for deep blue phosphorescent organic light-emitting diodes[J]. Adv. Mater., 2012, 24(24):3169-3190.
LIANG J, LI L, NIU X, et al.. Elastomeric polymer light-emitting devices and displays[J]. Nat. Photon., 2013, 7(10):817-824.
PARK J, PARK J S, PARK Y G, et al.. Synthesis, characterization of the phenylquinoline-based on iridium (Ⅲ) complexes for solution processable phosphorescent organic light-emitting diodes[J]. Org. Electron., 2013, 14(9):2114-2123.
SEO H S, KIM D K, OH J D, et al.. Organic light-emitting field-effect transistors based upon pentacene and perylene[J]. J. Phys. Chem. C, 2013, 117(9):4764-4770.
ZHU M, LUO H, WANG L, et al.. The synthesis of 2, 6-dialkylphenyldithieno[3, 2-b:2', 3'-d]thiophene derivatives and their applications in organic field-effect transistors[J]. Dyes and Pigments, 2013,98(1):17-24.
ANDERSEN T R, LARSEN-OLSEN T T, ANDREASEN B, et al.. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods[J]. ACS nano, 2011, 5(5):4188-4196.
LEE S, YEO J-S, JI Y, et al.. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes[J]. Nanotechnology, 2012, 23(34):344013.
GHOLAMKHASS B, KIASARI N M, SERVATI P. An efficient inverted organic solar cell with improved ZnO and gold contact layers[J]. Org. Electron., 2012,13(6):945-953.
PEUMANS P, UCHIDA S, FORREST S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003, 425(6954):158-162.
LIU R, CAI Y, PARK J M, et al.. Organic light-emitting diode sensing platform:challenges and solutions[J]. Adv. Funct. Mater., 2011, 21(24):4744-4753.
HSU K T, CHANG S M, LI G.Y, et al.. Enhanced luminescence of MEH-PPV through the reduction of chain aggregations by blending 4-cyano-4'-N-heptylbiphenyl[J]. J. Lumin., 2015, 158:447-450.
SCOTT J, KAUFMAN J, BROCK P, et al.. Degradation and failure of MEH-PPV light-emitting diodes[J]. Journal of Appl. Phys., 1996, 79(5):2745-2751.
SUN D, REN Z, BRYCE M R, et al.. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs)[J]. J. Mater. Chem. C, 2015, 3(37):9496-9508.
ABBASZADEH D, DOUMON N Y, WETZELAER G J A, et al.. Effect of the layer thickness on the efficiency enhancement in bilayer polymer light-emitting diodes[J]. Synth. Met., 2016, 215:64-67.
CHEN H W, HUANG T Y, CHANG T H, et al.. Efficiency enhancement of hybrid perovskite solar cells with MEH-PPV hole-transporting layers[J]. Sci. Rep., 2016:6.
AHMAD Z, SUHAIL M H, MUHAMMAD I I, et al.. MEH-PPV/Alq3-based bulk heterojunction photodetector[J]. Chin. Phys. B, 2013, 22(10):100701.
ISLAM S M, BANERJI P, BANERJEE S. Electrical bistability, negative differential resistance and carrier transport in flexible organic memory device based on polymer bilayer structure[J]. Organic Electronics, 2014,15(1):144-149.
RAMANA C V V, MOODLEY M K, KANNAN V, et al.. Solution based-spin cast processed organic bistable memory device[J]. Solid-State Electron., 2013, 81:45-50.
LLOYD G, CRAIG D, SMITH A. An investigation into the melting behavior of binary mixes and solid dispersions of paracetamol and PEG 4000[J]. J. Pharmaceut. Sci., 1997, 86(9):991-996.
KARAMAN S, KARAIPEKLI A, SARl A, et al.. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Mater. Solar Cells, 2011, 95(7):1647-1653.
YANG Y, OUYANG J, MA L, et al.. Electrical switching and bistability in organic/polymeric thin films and memory devices[J]. Adv. Funct. Mater., 2006, 16(8):1001-1014.
SONG W S, YANG H Y, YOO C H, et al.. Memory stabilities and mechanisms of organic bistable devices with a phase-separated poly (methylmethacrylate)/poly (3-hexylthiophene) hybrid layer[J]. Org. Electron., 2012, 13(11):2485-2488.
Electrical Bistable Devices Based on Poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene]/Tris(2-phenylpyridine)iridium(Ⅲ)
Preparation and Properties of A Novel Yellow Long Persistent Luminescence Material γ-SrGa2O4∶Bi3+
Polymer Bistable Devices Based on Poly(3-hexylthiophene)/Poly(methylmethacrylate) Bilayer Films
Photo-stimulated and Thermo Luminescence Properties of Tm3+ Doped SrAl2O4:Eu2+ Phosphors
Fabrication of White Polymer Light-emitting Diodes Using All-solution Method
Related Author
TENG Feng
WANG Min
WANG Yu-hua
WANG Zhong-zhi
WANG Ya-jie
PENG Bo
CAO Ya-peng
YU Xue
Related Institution
Key Laboratory of Luminescence and Optical Information, Ministry of Education,Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Baotou Research Institute of Rare Earths
School of Materials and Energy, Lanzhou University
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology