LI Bao-zhu, HUANG Zhen, DENG Gao-qiang etc. Effects of Step-graded Al<sub><em>x</em></sub>Ga<sub>1<em>-x</em>N Buffer on Properties of GaN Films</sub>[J]. Chinese Journal of Luminescence, 2017,38(6): 780-785
LI Bao-zhu, HUANG Zhen, DENG Gao-qiang etc. Effects of Step-graded Al<sub><em>x</em></sub>Ga<sub>1<em>-x</em>N Buffer on Properties of GaN Films</sub>[J]. Chinese Journal of Luminescence, 2017,38(6): 780-785 DOI: 10.3788/fgxb20173806.0780.
Effects of Step-graded AlxGa1-xN Buffer on Properties of GaN Films
High-quality GaN films were grown on Si-plane 6H-SiC (0001) substrates with AlN buffer and step-graded AlGaN (Al
x
Ga
1-
x
N:
x
=0.8
0.5
0.2) buffer with different growth temperature and NH
3
flux by metal-organic chemical vapor deposition (MOCVD). The properties of GaN films were examined by X-ray diffraction
atomic force microscopy
room temperature photoluminescence spectra and Raman spectra. Experimental results show that the lower tensile stress in the GaN films
the higher the crystallinity
surface morphologies and optical properties of the GaN films. Under the optimum conditions of AlGaN buffer
the stress value of GaN films is reduced to its minimum. The
-rocking curves full-width at half-maximum (FWHM) of the (0002) and (1012) planes are ameliorated to 191 and 243 arcsec
respectively. The densities of screw and edge dislocations decrease to the best values of 710
7
and 3.110
8
cm
-2
. The root-mean-squared roughness value is 0.381 nm. It shows that the step-graded AlGaN buffer can change stress state in GaN films effectively and improve the crystallinity of GaN films significantly.
关键词
Keywords
references
MNTZE G M, POUOKAM E, STEIDLE J, et al.. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors[J]. Biosens. Bioelectron., 2016, 77:1048-1054.
SUN Q, YAN W, FENG M X, et al.. GaN-on-Si blue/white LEDs:epitaxy, chip, and package[J]. J. Semicond.,2016, 37(4):044006-1-8.
黄华茂, 黄江柱, 胡晓龙, 等. 纳米柱高度对GaN基绿光LED光致发光谱的影响[J]. 发光学报, 2016, 37(8):967-972. HUANG H M, HUANG J Z, HU X L, et al. Effects of the height of nanorod structure on the photoluminescence spectra of GaN-based green LED[J]. Chin. J. Lumin., 2016, 37(8):967-972. (in Chinese)
王树奇, 吉才, 刘树林. GaN组合开关电路及其驱动技术研究[J]. 西安科技大学学报, 2016, 36(6):882-887. WANG S Q, JI C, LIU S L, Driving technology of GaN HEMT and its application[J]. J. Xi'an Univ. Sci. Technol., 2016, 36(6):882-887. (in Chinese)
DU C H, MA Z G, ZHOU J M, et al.. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption[J]. Appl. Phys. Lett.,2014, 105(7):071108-1-4.
REN C J, SHEN H C, LI Z H, et al.. GaN HEMT with AlGaN back barrier for high power MMIC switch application[J]. J. Semicond.,2015, 36(1):014008-1-5.
CALIEBE M, HAN Y S, HOCKER M, et al.. Growth and coalescence studies of (1122) oriented GaN on pre-structured sapphire substrates using marker layers[J]. Phys. Stat. Sol.(b), 2016, 253(1):46-53.
NI Y Q, HE Z Y, ZHONG J, et al.. Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers[J]. Chin. Phys. B, 2013, 22(8):088104-1-4.
ZHANG L, YU J X, HAO X P, et al.. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate[J]. Sci. Rep., 2014, 4:4179-1-6.
KOLESKE DD, HENRY R L, TWIGG M E, et al.. Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC[J]. Appl. Phys. Lett., 2002, 80(23):4372-4374.
LIANG H W, TAO P C, XIA X C, et al.. Vertically conducting deep-ultraviolet light-emitting diodes with interband tunneling junction grown on 6H-SiC substrate[J]. Jpn. J. Appl. Phys.,2016, 55(3):031202-1-5.
CHEN Y, JIANG Y, XU P Q, et al.. Stress control in GaN grown on 6H-SiC by metalorganic chemical vapor deposition[J]. Chin. Phys. Lett., 2011, 28(4):048101-1-4.
ACORD J D, WENG X J, DICKEY E C, et al.. Effects of a compositionally graded buffer layer on stress evolution during GaN and AlxGa1-xN MOCVD on SiC substrates[J]. J. Cryst. Growth, 2008, 310(7-9):2314-2319.
陈耀, 王文新, 黎艳, 等. 国产SiC衬底上利用AlN缓冲层生长高质量GaN外延薄膜[J]. 发光学报, 2011, 32(9):896-901. CHEN Y, WANG W X, LI Y, et al.. High quality GaN layers grown on SiC substrates with AlN buffers by metalorganic chemical vapor deposition[J]. Chin. J. Lumin., 2011, 32(9):896-901. (in Chinese)
KIM M H, DO Y G, KANG H C, et al.. Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition[J]. Appl. Phys. Lett., 2001, 79(17):2713-2715.
CHENG K, LEYS M, DEGROOTE S, et al.. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers[J]. J. Electron. Mater., 2006, 35(4):592-598.
HUANG CC, CHANG S J, CHUANG R W, et al.. GaN grown on Si(111) with step-graded AlGaN intermediate layers[J]. Appl. Surf. Sci., 2010, 256(21):6367-6370.
CHENG J P, YANG X L, SANG L, et al.. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology[J]. Appl. Phys. Lett., 2015, 106(14):142106-1-4.
SONG S W, LIU Y, LIANG H W, et al.. Improvement of quality and strain relaxation of GaN epilayer grown on SiC substrate by in situ SiNx interlayer[J]. J. Mater. Sci. Mater. Electron., 2013, 24(8):2923-2927.
CHIU C H, TU P M, CHANG S P, et al.. Light output enhancement of GaN-based light-emitting diodes by optimizing SiO2 nanorod-array depth patterned sapphire substrate[J]. Jpn. J. Appl. Phys., 2012, 51(4S):04DG11-1-6.
HUANG Z, ZHANG Y T, ZHAO B J, et al.. Effects of AlN buffer on the physical properties of GaN films grown on 6H-SiC substrates[J]. J. Mater. Sci. Mater. Electron., 2016, 27(2):1738-1744.
BROWN D F, KELLER S, WU F, et al.. Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition[J]. J. Appl. Phys., 2008, 104(2):024301-1-5.
KUCHEYEV S O, TOTH M, PHILLIPS M R, et al.. Chemical origin of the yellow luminescence in GaN[J]. J. Appl. Phys., 2002, 91(9):5867-5874.
LIN Z Y, ZHANG J C, CAO R T, et al.. Effect of growth temperature on the impurity incorporation and material properties of N-polar GaN films grown by metal-organic chemical vapor deposition[J]. J. Cryst. Growth, 2013, 384:96-99.
ZHAO D G, JIANG D S, YANG H, et al.. Role of edge dislocations in enhancing the yellow luminescence of n-type GaN[J]. Appl. Phys. Lett., 2006, 88(24):241917-1-3.
CAO R T, XU S R, ZHANG J C, et al.. Improvement in a-plane GaN crystalline quality using wet etching method[J]. Chin. Phys. B, 2014, 23(4):047804-1-5.
TAO P C, LIANG H W, XIA X C, et al.. The influence of reactor height adjustment on properties in GaN films grown on 6H-SiC by metal organic chemical vapor deposition[J]. J. Mater. Sci., 2014, 25(10):4268-4272.
WAGNER J M, BECHSTEDT F. Phonon deformation potentials of -GaN and-AlN:an ab initio calculation[J]. Appl. Phys. Lett., 2000, 77(3):346-348.
AHMAD I, HOLTZ M, FALEEV N N, et al.. Dependence of the stress-temperature coefficient on dislocation density in epitaxial GaN grown on -Al2O3 and 6H-SiC substrates[J]. J. Appl. Phys., 2004, 95(4):1692-1697.
TANIYASU Y, KASU M, MAKIMOTO T. Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate[J]. J. Cryst. Growth, 2007, 298:310-315.