浏览全部资源
扫码关注微信
湖北文理学院 低维光电材料与器件湖北省重点实验室,湖北 襄阳,441053
Received:01 January 2017,
Revised:15 March 2017,
Published:05 June 2017
移动端阅览
程晓红, 钟志成, 李望南. 基于置换法的硫离子荧光传感器的研究及其在生物细胞成像中的应用[J]. 发光学报, 2017,38(6): 768-779
CHENG Xiao-hong, ZHONG Zhi-cheng, LI Wang-nan. Coumarin-derived Fluorescent Chemosensor for Sulfide Anion:Displacement Approach and Bioimaging Application[J]. Chinese Journal of Luminescence, 2017,38(6): 768-779
程晓红, 钟志成, 李望南. 基于置换法的硫离子荧光传感器的研究及其在生物细胞成像中的应用[J]. 发光学报, 2017,38(6): 768-779 DOI: 10.3788/fgxb20173806.0768.
CHENG Xiao-hong, ZHONG Zhi-cheng, LI Wang-nan. Coumarin-derived Fluorescent Chemosensor for Sulfide Anion:Displacement Approach and Bioimaging Application[J]. Chinese Journal of Luminescence, 2017,38(6): 768-779 DOI: 10.3788/fgxb20173806.0768.
报道了一种基于香豆素衍生物与铜离子的络合物(C1-Cu),可通过间接的方法检测硫离子。络合物C1-Cu的溶液中加入硫离子后,表现出明显的荧光增强响应,检测灵敏度高,检出限低达90 nmol/L;响应速度快,可实现硫离子的实时检测;荧光强度变化与硫离子浓度呈现良好的线性关系,能准确地定量分析硫离子浓度。上述络合物C1-Cu对硫离子的检测具有超高的选择性,即使在其他阴离子存在下也能高效地识别出硫离子;得益于香豆素良好的水溶性和生物相容性,上述络合物C1-Cu可实现生物细胞中硫离子的荧光成像。除荧光光谱响应之外,该体系对硫离子亦有紫外-可见光谱响应,无需借助任何仪器便可实现对硫离子方便、快捷的"裸眼"检测。
We reported herein an ensemble C1-Cu
2+
as a new displacement-based fluorescent probe for sulfide anion detection. Upon the addition of S
2-
it displayed marked fluorescence enhancement under aqueous conditions and the detection limit was determined to be as low as 90 nmol/L. In addition to its high selectivity for sulfide anion rather than other common anions
C1 was successfully applied to the detection of sulfide anion in HeLa cells with Turn-On fluorescent methods.
BEER P D, HAYES E J. Transition metal and organometallic anion complexation agents[J]. Coord. Chem. Rev., 2003, 240:167-189.
CHRISTIANSON D W, LIPSCOME W N. Carboxypeptidase A[J]. Acc. Chem. Res., 1989, 22:62-69.
GALEP P D. Anion recognition and sensing:the state of the art and perspectives[J]. Angew. Chem. Int. Ed. Engl., 2001, 40:486-516.
LINARES J M, POWELL D, BOWMAN-JAMES K. Ammonium based anion receptors[J]. Coord. Chem. Rev., 2003, 240:57-75.
CAROLAN J V, BUTLER S J, JOLLIFFE K A. Selective anion binding in water with use of a zinc(Ⅱ) dipicolylamino functionalized diketopiperazine scaffold[J]. J. Org. Chem., 2009, 74:2992-2996.
KIM Y K, LEE Y H, LEE H Y, et al.. Molecular recognition of anions through hydrogen bonding stabilization of anion-ionophore adducts:a novel trifluoroacetophenone-based binding motif[J]. Org. Lett., 2003, 5:4003-4006.
JIANG X, VIEWEGER M C, BOLLINGER J C, et al.. Reactivity-based fluoride detection:evolving design principles for spring-loaded turn-on fluorescent probes[J]. Org. Lett., 2007, 9:3579-3582.
SUN Z, WANG H, LIU F, et al.. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells[J]. Org. Lett. 2009, 11:1887-1890.
XU Z, KIM S K, YOON J. Revisit to imidazolium receptors for the recognition of anions[J]. Chem. Soc. Rev., 2010, 39:1457-1466.
DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, et al.. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97:1515-1566.
THOMAS S W, JOLY G D, SWAGER T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem. Rev., 2007, 107:1339-1386.
YOON J, KIM S K, SINGH N J, et al.. Imidazolium receptors for the recognition of anions[J]. Chem. Soc. Rev., 2006, 35:355-360.
SCHMIDTCHEN F P, BERGER M. Artificial organic host molecules for anions[J]. Chem. Rev., 1997, 97:1609-1646.
BALASUBRAMANIAN S, PUGALENTHI V. A comparative study of the determination of sulphide in tannery waste water by ion selective electrode (ISE) and iodimetry[J]. Water Res., 2000, 34:4201-4206.
SILVA M S P, GALHARDO C X, MASINI J C. Application of sequential injection-monosegmented flow analysis (SI-MSFA) to spectrophotometric determination of sulfide in simulated waters samples[J]. Talanta, 2003, 60:45-52.
SILVA M S P, DA SILVA I S, ABATE G, et al.. Spectrophotometric determination of acid volatile sulfide in river sediments by sequential injection analysis exploiting the methylene blue react[J]. Talanta, 2001, 53:843-850.
MAYA F, ESTELA J M, CERDV. Improving the chemiluminescence-based determination of sulphide in complex environmental samples by using a new, automated multi-syringe flow injection analysis system coupled to a gas diffusion unit[J]. Anal. Chim. Acta. 2007, 601:87-94.
RODRGUEZ-FERNNDEZ J, COSTA J M, PEREIRO R, et al.. Simple detector for oral malodour based on spectrofluorimetric measurements of hydrogen sulphide in mouth air[J]. Anal. Chim. Acta., 1999, 398:23-31.
JIMNEZ D, MARTNEZ-MEZ R, SANCENN F, et al.. A new chromo-chemodosimeter selective for sulfide anion[J]. J. Am. Chem. Soc., 2003, 125:9000-9001.
ZHANG J, ZHOU Y, YOON J, et al.. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)[J]. Chem. Soc. Rev., 2011, 40:3416-3429.
KIM J S, QUANG D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007, 107:3780-3799.
SINKELDAM R W, GRECO N J, TOR Y. Fluorescent analogs of biomolecular building blocks:design, properties, and applications[J]. Chem. Rev., 2010, 110:2579-2619.
DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, et al.. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97:1515-1566.
KIM H N, LEE M H, KIM H J, et al.. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions[J]. Chem. Soc. Rev., 2008, 37:1465-1472.
QUANG D T, KIM J S. Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens[J]. Chem. Rev., 2010, 110:6280-6301.
MCDONAGH C, BURKE C S, MACCRAITH B D. Optical chemical sensors[J]. Chem. Rev., 2008, 108:400-422.
KOBAYASHI H, OGAWA M, ALFORD R, et al.. New strategies for fluorescent probe design in medical diagnostic imaging[J]. Chem. Rev., 2010, 110:2620-2640.
BOBACKA J, IVASKA A, LEWENSTAM A. Potentiometric ion sensors[J]. Chem. Rev., 2008, 108:329-351.
KIM H N, REN W, KIM J S, et al.. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chem. Soc. Rev., 2012, 41:3210-3244.
LV J, WANG F, QIANG J, et al.. Enhanced response speed and selectivity of fluorescein-based H2S probe via the cleavage of nitrobenzene sulfonyl ester assisted by ortho aldehyde groups[J]. Biosens. Bioelectron., 2017, 87:96-100.
ZHOU G, WANG H, MA Y, et al.. An NBD fluorophore-based colorimetric and fluorescent chemosensor for hydrogen sulfide and its application for bioimaging[J]. Tetrahedron, 2013, 69:867-870.
MORAGUES M E, MARTNEZ-MEZ R, SANCENN F. Chromogenic and fluorogenic chemosensors and reagents for anions[J]. Chem. Soc. Rev., 2011, 40:2593-2643.
GALE P A. Anion receptor chemistry:highlights from 2008 and 2009[J]. Chem. Soc. Rev., 2010, 39:3746-3771.
CLAUDIA R C, FRANCISCO J C. Application of flow injection analysis for determining sulphites in food and beverages:a review[J]. Food Chem., 2009, 112:487-493.
ITO A, ISHIZAKA S, KITAMURA N. A ratiometric TICT-type dual fluorescent sensor for an amino acid[J]. Phys. Chem. Chem. Phys., 2010, 12:6641-6649.
LODEIRO C, PINA F. Luminescent and chromogenic molecular probes based on polyamines and related compounds[J]. Coord. Chem. Rev., 2009, 253:1353-1383.
WU J, ZHOU J, WANG P, et al.. New fluorescent chemosensor based on exciplex signaling mechanism[J]. Org. Lett., 2005, 7:2133-2136.
CHEN W B, ELFEKY S A, NONNE Y, et al.. A pyridinium cation- interaction sensor for the fluorescent detection of alkyl halides[J]. Chem. Commun., 2011, 47:253-255.
HUANG Y, JIANG Y, BULL S D, et al.. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker[J]. Chem. Commun., 2010, 46:8180-8182.
CALLAN J F, DE SILVA A P, MAGRI D C. Luminescent sensors and switches in the early 21st century[J]. Tetrahedron, 2005, 61:8551-8588.
MARTNEZ-MEZ R, SANCENN F. Fluorogenic and chromogenic chemosensors and reagents for anions[J]. Chem. Rev., 2003, 103:4419-4476.
LOU X, OU D, LI Q, et al.. An indirect approach for anion detection:the displacement strategy and its application[J]. Chem. Commun., 2012, 48:8462-8477.
CHEN X, NAM S-W, KIM G-H, et al.. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging[J]. Chem. Commun., 2010, 46:8953-8955.
QIANG J, CHANG C, ZHU Z, et al.. A dinuclear-copper(Ⅱ) complex-based sensor for pyrophosphate and its applications to detecting pyrophosphatase activity and monitoring polymerase chain reaction[J]. Sens. Actuat. B, 2016, 233:591-598.
WANG H, ZHOU G, CHEN X. An iminofluorescein-Cu2+ ensemble probe for selective detection of thiols[J]. Sens. Actuat. B, 2013, 176:698-703.
YU W, QIANG J, YIN J, et al.. Ammonium-bearing dinuclear Copper(Ⅱ) complex:a highly selective and sensitive colorimetric probe for pyrophosphate[J]. Org. Lett., 2014, 16:2220-2223.
LI Z, LOU X, YU H, et al.. An imidazole-functionalized polyfluorene derivative as sensitive fluorescent probe for metal ions and cyanide[J]. Macromolecules 2008, 41:7433-7439.
LOU X, ZHANG L, QIN J, et al.. An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water[J]. Chem. Commun., 2008, 44:5848-5850.
LOU X, QIANG L, QIN J, et al.. A new rhodamine-based colorimetric cyanide chemosensor:convenient detecting procedure and high sensitivity and selectivity[J]. ACS Appl. Mater. Interf., 2009, 1:2529-2535.
LOU X, QIN J, LI Z. Colorimetric cyanide detection using an azobenzene acid in aqueous solutions[J]. Analyst, 2009, 134:2071-2075.
ZENG Q, CAI P, LI Z, et al.. An imidazole-functionalized polyacetylene:convenient synthesis and selective chemosensor for metal ions and cyanide[J]. Chem. Commun., 2008, 44:1094-1096.
LOU X, MU H, GONG R, et al.. Displacement method to develop highly sensitive and selective dual chemosensor towards sulfide anion[J]. Analyst, 2011, 136:684-687.
ZHANG L, LOU X, YU Y, et al.. A new disubstituted polyacetylene bearing pyridine moieties:convenient synthesis and sensitive chemosensor toward sulfide anion with high selectivity[J]. Macromolecules, 2011, 44:5186-5193.
CHOI M G, CHA S, LEE H, et al.. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein[J]. Chem. Commun., 2009, 45:7390-7392.
CAO X, LIN W, HE L. A near-infrared fluorescence turn-on sensor for sulfide anions[J]. Org. Lett., 2011, 13:4716-4719.
HOU F, HUANG L, XI P, et al.. A retrievable and highly selective fluorescent probe for monitoring sulfide and imaging in living cells[J]. Inorg. Chem., 2012, 51:2454-2460.
JUNG H S, KWON P S, LEE J W, et al.. Coumarin-derived Cu2+-selective fluorescence sensor:synthesis, mechanisms, and applications in living cells[J]. J. Am. Chem. Soc., 2009, 131:2008-2012.
WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst, 1983, 108:1067-1071.
LIU L, DONG X, XIAO Y, et al.. Two-photon excited fluorescent chemosensor for homogeneous determination of copper(Ⅱ) in aqueous media and complicated biological matrix[J]. Analyst, 2011, 136:2139-2145.
FU Y, LI H, HU W, et al.. Fluorescence probes for thiol-containing amino acids and peptides in aqueous solution[J]. Chem. Commun., 2005, 41:3189-3191.
HAO W, MCBRIDE A, MCBRIDE S, et al.. Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma[J]. J. Mater. Chem., 2011, 21:1040-1048.
HUO F, YANG Y, SU J, et al.. Indicator approach to develop a chemosensor for the colorimetric sensing of thiol-containing water and its application for the thiol detection in plasma[J]. Analyst, 2011, 136:1892-1897.
GAO C, ZHANG L, YANG Y, et al.. Application of rhodamine salicylidene hydrazone-Cu2+ complex probe to the detection of cysteine[J]. Petrochem. Technol., 2016, 45:1375-1379.
0
Views
112
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution