浏览全部资源
扫码关注微信
北京工业大学 光电子技术省部共建教育部重点实验室 北京,100124
Received:17 December 2016,
Revised:13 March 2017,
Published:05 June 2017
移动端阅览
郭伟玲, 陈艳芳, 李松宇等. GaN基HEMT器件的缺陷研究综述[J]. 发光学报, 2017,38(6): 760-767
GUO Wei-ling, CHEN Yan-fang, LI Song-yu etc. Reviews on Trapping Effects of GaN-based HEMTs[J]. Chinese Journal of Luminescence, 2017,38(6): 760-767
郭伟玲, 陈艳芳, 李松宇等. GaN基HEMT器件的缺陷研究综述[J]. 发光学报, 2017,38(6): 760-767 DOI: 10.3788/fgxb20173806.0760.
GUO Wei-ling, CHEN Yan-fang, LI Song-yu etc. Reviews on Trapping Effects of GaN-based HEMTs[J]. Chinese Journal of Luminescence, 2017,38(6): 760-767 DOI: 10.3788/fgxb20173806.0760.
GaN基高电子迁移率晶体管(HEMT)因具有高输出功率密度、高工作频率、高工作温度等优良特性,在高频大功率等领域具有广泛应用前景。目前,HEMT器件在材料生长和工艺制备方面都取得了巨大的进步。但是,由缺陷产生的陷阱效应一直是限制其发展的重要原因。本文首先论述了HEMT器件中的表面态、界面缺陷和体缺陷所在位置及其产生的原因。然后,阐述了由陷阱效应引起的器件电流崩塌、栅延迟、漏延迟、Kink效应等现象,从器件结构设计和工艺设计角度,总结提出了改善缺陷相关问题的主要措施,其中着重总结了器件盖帽层、表面处理、钝化层和场板结构4个方面的最新研究进展。最后,探索了GaN基HEMT器件在缺陷相关问题上的未来优化方向。
High electron mobility transistors (HEMTs) based on GaN have a promising prospect in the fields of high frequency and high power due to their advantages of high output power density
high operating frequency and high operating temperature. At present
great progress has been made in material growth and fabrication processes of HEMTs. However
the trapping effect produced by the defect limits the development of HEMTs. In this paper
the surface states
interface defects and bulk defects of HEMT devices and the causes of these defects were discussed. The phenomenon caused by trap effect such as the current collapse
gate lag
drain lag and kink effect were also described in detail. The main approaches to improve the defects were summarized from structure design and process design. And the latest progresses focusing on the four aspects of the capping layer
surface treatment
passivation layer and field plate structure were reviewed. Further optimization in the defect of the GaN based HEMT devices was explored at the end.
HE L, CHENGCHENG Y, LIXING F, et al.. Evaluations and applications of GaN HEMTs for power electronics[C]. 2016 IEEE 8th International Power Electronics and Motion Control Conference. New York:IEEE, 2016:563-569.
BINARI S C, KLEIN P B, KAZIOR T E. Trapping effects in GaN and SiC microwave FETs[J]. Proc. IEEE, 2002, 90(6):1048-1058.
DIVAY A, LATRY O, DUPERRIER C, et al.. Ageing of GaN HEMT devices:which degradation indicators?[J]. J. Semicond., 2016, 37(1):014001.
KHAN M A, BHATTARAI A, KUZNIA J N, et al.. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction[J]. Appl. Phys. Lett., 1993, 63(9):1214-1215.
KHAN M A, SHUR M S, CHEN Q C, et al.. Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias[J]. Electron. Lett., 1994, 30(25):2175-2176.
DAMMANN M, PLETSCHEN W, WALTEREIT P, et al.. Reliability and degradation mechanism of AlGaN/GaN HEMTs for next generation mobile communication systems[J]. Microelectron. Reliab., 2009, 49(5):474-477.
VETURY R, ZHANG N Q, KELLER S, et al.. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs[J]. IEEE Trans. Electron Dev., 2001, 48(3):560-566.
YANG S, LIU S, LU Y, et al.. AC-capacitance techniques for interface trap analysis in GaN-based buried-channel MIS-HEMTs[J]. IEEE Trans. Electron Dev., 2015, 62(6):1-1.
MENEGHESSO G. MENEGHINI M, BISI D, et al.. Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate[J]. Microelectron. Reliab., 2016, 58:151-157.
MENEGHINI M, ROSSETTO I, BISI D, et al.. Buffer traps in Fe-doped AlGaN/GaN HEMTs:Investigation of the physical properties based on pulsed and transient measurements[J]. IEEE Electron Dev. Lett., 2014, 61(12):4070-4077.
PINOS A, MARCINKEVICIUS S, USMAN M, et al.. Time-resolved luminescence studies of proton-implanted GaN[J]. Appl. Phys. Lett., 2009, 95(11):112108-1-3.
BOYKO V M, VEREVKIN S S, KOLIN N G, et al.. The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers[J]. J. Semicond., 2011, 45(1):134-140.
HWANG I, KIM J, CHONG S, et al.. Impact of channel hot electrons on current collapse in AlGaN/GaN HEMTs[J]. IEEE Electron Dev. Lett., 2013, 34(12):1494-1496.
PADMANABHAN B, VASILESKA D, GOODNICK S M. Is self-heating responsible for the current collapse in GaN HEMTs?[J]. J. Comput. Electron., 2012, 11(1):129-136.
DAUMILLER I, THERON D, GAQUIERE C, et al.. Current instabilities in GaN-based devices[J]. IEEE Electron Dev. Lett., 2001, 22(2):62-64.
GHOSH S. Induced strain mechanism of current collapse in AlGaN/GaN heterostructure field-effect transistors[J]. Appl. Phys. Lett., 2001, 79(16):2651-2653.
ZHOU X, FENG Z, WANG L, et al.. Impact of bulk traps in GaN buffer on the gate-lag transient characteristics of AlGaN/GaN HEMTs[J]. Solid-State Electron., 2014, 100(100):15-19.
HORIO K, YONEMOTO K, TAKAYANAGI H, et al.. Physics-based simulation of buffer-trapping effects on slow current transients and current collapse in GaN field effect transistors[J]. J. Appl. Phys., 2006, 98(12):124502-124502-7.
NAKAJIMA A, FUJⅡ K, HORIO K. Buffer-related gate lag in AlGaN/GaN HEMTs[J]. Phys. Stat. Sol., 2012, 9(7):1658-1660.
RAMANAN N, LEE B, MISRA V. Device Modeling for Understanding AlGaN/GaN HEMT Gate-Lag[J]. IEEE Trans. Electron Dev., 2014, 61(6):2012-2018.
KALAVAGUNTA A, SILVESTRI M, BECK M J, et al.. Impact of proton irradiation-induced bulk defects on gate-lag in GaN HEMTs[J]. IEEE Trans. Nucl. Sci., 2009, 56(6):3192-3195.
FU L, LU H, CHEN D, et al.. Field-dependent carrier trapping induced kink effect in AlGaN/GaN high electron mobility transistors[J]. Appl. Phys. Lett., 2011, 98(17):173508-1-3.
Wang M,Chen K J. Kink effect in AlGaN/GaN HEMTs induced by drain and gate pumping[J]. IEEE Electron Dev. Lett., 2011, 32(4):482-484.
马骥刚, 马晓华, 张会龙,等. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型[J]. 物理学报, 2012, 61(4):047301. (in Chinese) MA J G, MA X H., ZHANG H L, et al.. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor[J]. Acta Phys. Sinica, 2012, 61(4):047301.
MA X H, LU M, PANG L, et al.. Kink effect in current-voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier[J]. Chin. Phys. B, 2014, 23(2):452-456.
KUN L, HUI Z, SHIWEI F, et al.. Effect of dynamic stress on the properties of the ALGaN/GaN HEMTs[J]. Semicond. Technol., 2015, 40(8):626-630.
SHEN L, COFFIE R, BUTTARI D, et al.. High-power polarization-engineered GaN/AlGaN/GaN HEMTs without surface passivation[J]. IEEE Electron Dev. Lett., 2004, 25(1):7-9.
HWANG I, CHOI H, LEE J W, et al.. 1.6 kV, 2.9 mcm2 normally-off p-GaN HEMT device[C]. Proceedings of the 201224th International Symposium on Power Semiconductor Devices and ICs. New York:IEEE, 2012:41-44.
HAO R, FU K, YU G, et al.. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment[J]. Appl. Phys. Lett., 2016, 109(15):117.
LIN Y S, WONG K Y, LANSBERGEN G P, et al.. Improved trap-related characteristics on SiNx/AlGaN/GaN MISHEMTs with surface treatment[C]. IEEE International Symposium on Power Semiconductor Devices & Ic's. New York:IEEE, 2014:293-296.
TSENG M C, HUNG M H, WUU D S, et al.. Study of interface state trap density on characteristics of MOS-HEMT[C]. Proceedings of SPIE:Gallium Nitride Materials and Devices X. Bellingham:SPIE, 2015:9633.
MI M H, ZHANG K, ZHAO S L, et al.. Improved performance of AlGaN/GaN HEMT by N2O plasma pre-treatment[J]. Chin. Phys. B, 2015, 24(2):382-386.
LIU S C, DAI G M, CHANG E Y. Improved reliability of GaN HEMTs using N2 plasma surface treatment[C]. IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits:22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, New York:IEEE, 2015:413-415.
于宁, 王红航, 刘飞飞,等. GaN HEMT器件结构的研究进展[J]. 发光学报, 2015,36(10):1178-1187. YU N, WANG H H, LIU F F, et al.. Research progress of GaN HEMT device structure[J]. Chin. J. Lumin., 2015, 36(10):1178-1187. (in Chinese)
TAKIZAWA T, NAKAZAWA S, UEDA T. Crystalline SiNx ultrathin films grown on AlGaN/GaN using in situ metalorganic chemical vapor deposition[J]. J. Electron. Mater., 2008, 37(5):628-634.
YATABE Z, ASUBAR J. T, HASHIZUME T. Insulated gate and surface passivation structures for GaN-based power transistors[J]. J. Phys. D:Appl. Phys., 2016, 49(39):393001.
GREEN B M, CHU K K, CHUMBES E M, et al.. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs[J]. IEEE Electron Dev. Lett., 2000, 21(6):268-270.
GU W P, ZHANG L, LI Q H, et al.. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors[J]. Acta Phys. Sinica, 2014, 63(4):47202-047202.
TANG Z, HUANG S, JIANG Q, et al.. 600 V 1.3mcm2 low-leakage low-current-collapse AlGaN/GaN HEMTs with AlN/SiNx passivation[J]. IEEE Electron Dev. Lett., 2013, 37:265-268.
魏巍, 林若兵, 冯倩,等. 场板结构AlGaN/GaN HEMT的电流崩塌机理[J]. 物理学报, 2008, 57(1):467-471. WEI W, LIN R B, FENG Q, et al.. Current collapse mechanism of field-plated AlGaN/GaN HEMTs[J]. Acta Phys. Sinica, 2008, 57(1):467-471. (in Chinese)
毛维, 杨翠, 郝跃,等. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究[J]. 物理学报, 2011, 60(1):017205-149. MAO W, YANG C, HAO Y, et al.. Study on the suppression mechanism of current collapse with field-plates in GaN high-electron mobility transistors[J]. Acta Phys. Sinica, 2011, 60(1):017205-149. (in Chinese)
NAKAJIMA A, ITAGAKI K, HORIO K. Reduction of buffer-related current collapse in field-plate AlGaN/GaN HEMTs[J]. Phys. Stat. Sol., 2009, 6(6):S929-S932.
NODA N, TSURUMAKI R, HORIO K. Analysis of lags and current collapse in field-plate AlGaN/GaN HEMTs with deep acceptors in a buffer layer[J]. Phys. Stat. Sol., 2016, 13(5-6):341-344.
YONG L, HAI L. Influence of field plate on surface-state-related lag characteristics of AlGaN/GaN HEMT[J]. J. Semicond., 2015, 36(7):074007-4.
WANG D H, ZHOU H, ZHANG J C, et al.. Study on growing thick AlGaN layer on c-plane sapphire substrate and free-standing GaN substrate[J]. Sci. China Phys.: Mechan. Astron., 2012, 55(12):2383-2388.
GONSCHOREK M, CARLIN J F, FELTIN E, et al.. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures[J]. Appl. Phys. Lett., 2006, 89(6):062106-1-3.
HIROKI M, YOKOYAMA H, WATANABE N, et al.. High-quality InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy[J]. Superlatt. Microstruct., 2006, 40(4-6):214-218.
0
Views
1493
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution