浏览全部资源
扫码关注微信
华南理工大学物理与光电学院 亚热带建筑国家重点实验室, 广东 广州 510641
Received:21 November 2016,
Revised:22 January 2017,
Published:05 June 2017
移动端阅览
周晓明, 刘丹丹,. 不同年龄群体的光生物效应评价方式[J]. 发光学报, 2017,38(6): 721-728
ZHOU Xiao-ming, LIU Dan-dan,. Evaluation of Photobiological Effects in Different Age Groups[J]. Chinese Journal of Luminescence, 2017,38(6): 721-728
周晓明, 刘丹丹,. 不同年龄群体的光生物效应评价方式[J]. 发光学报, 2017,38(6): 721-728 DOI: 10.3788/fgxb20173806.0721.
ZHOU Xiao-ming, LIU Dan-dan,. Evaluation of Photobiological Effects in Different Age Groups[J]. Chinese Journal of Luminescence, 2017,38(6): 721-728 DOI: 10.3788/fgxb20173806.0721.
研究了照明光环境对不同年龄人群的光生物效应定量评价方式。从光照转换角度提出了一种考虑不同年龄人眼透射谱、瞳孔直径以及受光面积的节律因子模型,选取3种不同色温(3 000,4 000,6 000 K)的白光LED光源,在同种照度500 lx下实验测试其光谱分布,并对提出的节律因子进行计算,与之前标准中考虑年龄的修正因子方式进行了线性拟合对比分析。结果表明:在相同色温下,随着年龄的增大,节律因子值逐渐减少;而对于相同年龄,随着色温的增大,节律因子是变大的,此种规律与其他研究人员得出的实验结论一致。从线性拟合相关度上来看,三种色温下两种考虑年龄的节律因子的直线相关度分别为0.95808,0.95833,0.95722,具有较高的相关性。较之于标准中的考虑透光谱方式,本文提出了另外一种考虑不同年龄人眼差异的光生物效应评价方式,尝试对人眼模型的透射谱进行绝对而不是相对效应的考虑方式。
This paper performed quantitative evaluation of the effects of light illumination environment on photobiological response of different age groups. From the perspective of light conversion
a biological rhythm factor model is proposed considering the ocular transmittances of different ages
pupil diameter and the illuminated area in the retina. Three kinds of white LED light sources (3 000
4 000
6 000 K) with different color temperatures were selected and their spectral distributions were measured at the same illumination 500 lx. Then we calculate the rhythm factors
and make the linear fitting with the evaluation model which use the modified factor proposed in the former standard. The result shows that under the same color temperature
the biological rhythm factor value decreases with increasing age. For the same kind of age
the biological rhythm factor values increases with the increase of the color temperature. These results are consistent with some researcher's conclusion. In addition
according to the result of linear fitting
the linear correlation of two age-related rhythm factors in three different color temperatures were 0.958 08
0.985 833 and 0.957 22
respectively
with a high correlation. Compared with the way in the standard
this article proposed another evaluation model considering difference in human eye age
and attempt to use absolute rather than relative effects of the transmittance.
ERSON D M, DUNN F A, TAKAO M. Phototransduction by retinal ganglion cells that set the circadian clock[J]. Science, 2002, 295(5557):1070-1073.
徐嘉彬. 基于生理体征的光生物效应照明研究[D]. 广州:华南理工大学, 2015. XU J B. The Research of Lighting Based on The Physical Signs of Biological Effects of Light [D]. Guangzhou:South China University of Technology, 2015. (in Chinese)
AMUNDADOTTIR M L, LOCKLEY S W, ANDERSEN M. Unified framework to evaluate non-visual spectral effectiveness of light for human health[J]. Light. Res. Technol., 2016:1-24. doi:10.1177/1477153516655844.
REA M S, FIGUEIRO M G, BULLOUGH J D. Circadian photobiology:an emerging framework for lighting practice and research[J]. Light. Res. Technol., 2002, 34(3):177-190.
KESSEL L, LUNDEMAN J H, HERBST K, et al.. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment[J]. J. Cataract Refract. Surg., 2010, 36(2):308-312.
VANDE KRAATS J, VAN NORREN D. Optical density of the aging human ocular media in the visible and the UV[J]. J. Opt. Soc. Am. A, 2007, 24(7):1842-1857.
LUCAS R J, PEIRSON S N, BERSON D M, et al.. Measuring and using light in the melanopsin age[J]. Trends Neurosci., 2014, 37(1):1-9.
FIGUEIRO M, OVERINGTON D. Self-luminous devices and melatonin suppression in adolescents[J]. Light. Res. Technol., 2016, 48(8), doi:10.1177/1477153515584979.
居家奇. 照明光生物效应的光谱响应数字化模型研究[D]. 上海:复旦大学, 2011. JU J Q. Research on Digitalized Model of Spectral Response for Biological Effects of Lighting [D]. Shanghai:Fudan University, 2011. (in Chinese)
BRAINARD G C, HANIFIN J P, GREESON J M, et al.. Action Spectrum for melatonin regulation in humans:evidence for a novel circadian photoreceptor[J]. J. Neurosci., 2001, 21(16):6405-6412.
徐蔚. 基于瞳孔收缩的非视觉感光系统的研究[D]. 上海:复旦大学, 2011. XU W.Research on Non-visual Photosensitive System Based on Pupil Contraction[D]. Shanghai:Fudan University, 2011. (in Chinese)
GALL D, BIESKE K. Definition and measurement of circadian radiometric quantities[C]. Proceedings of The CIE Symposium 2004 on Light and Health, Vienna, Austria, 2004:129-132.
REA M S, FIGUEIRO M G, BIERMAN A, et al.. Modelling the spectral sensitivity of the human circadian system[J]. Light. Res. Technol., 2012, 44(4):386-396.
ALADOV A V, ZAKGEIM A L, MIZEROV M N, et al.. Concerning biological equivalent of radiation of light-emitting diode and lamp light sources with correlated colour temperature of 1800 K up-10000 K[J]. Light Eng., 2012, 20(3):9-14.
居家奇, 陈枕流, 梁荣庆, 等. 使用光剂量评价照明的非视觉生物效应[J]. 照明工程学报, 2012, 23(5):1-3. JU J Q, CHEN Z L, LIANG R Q, et al.. Evaluating the non-visual biological effects of lighting by light dose[J]. China Illumin. Eng. J., 2012, 23(5):1-3. (in Chinese)
周晓明, 徐嘉彬, 邵志栋. 光生物节律因子计算模型的研究[J]. 光子学报, 2015, 44(2):0217001-1-4. ZHOU X M, XU J B, SHAO Z D. Research of the calculation model of light biorhythm factor[J]. Acta Photon. Sinica, 2015, 44(2):0217001-1-4. (in Chinese)
DIN V 5031-100 Opticalradiation physics and illuminating engineering-part 100:non-visual effects of ocular light on human beings-quantities, symbols and action spectra[S]. Berlin:Beuth Verlag GmbH, 2009.
THAPAN K, ARENDT J, SKENE D J. An action spectrum for melatonin suppression:evidence for a novel non-rod, non-cone photoreceptor system in humans[J]. J. Physiol., 2001, 535(1):261-267.
GALL D. Circadiane lichtgren und deren messtechnische ermittlung[J]. Licht, 2002, 54(11-12):1292-1297.
ENEZI J, REVELL V, BROWN T, et al.. A "melanopic" spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights[J]. J. Biol. Rhythms, 2011, 26(4):314-323.
BRAINARD G C, SLINEY D, HANIFIN J P, et al.. Sensitivity of the human circadian system to short-wavelength (420-nm) light[J]. J. Biol. Rhythms, 2008, 23(5):379-386.
BERMAN S M. A new retinal photoreceptor Should affect lighting practice[J]. Light. Res. Technol., 2008, 40(4):373-376.
饶丰, 朱锡芳, 徐安成, 等. LED背光显示器对不同年龄人视网膜照度、节律效应和蓝光危害的影响[J]. 光子学报, 2015, 44(5):0417003-1-6. RAO F, ZHU X F, XU A C, et al.. Effect of retina illuminance, circadian rhythm and blue light hazard of LED backlight display on the human of different ages[J]. Acta Photon. Sinica, 2015, 44(5):0417003-1-6. (in Chinese)
饶丰, 徐安成, 朱锡芳. LED照明节律效应随年龄的变化[J]. 发光学报, 2016, 37(2):250-255. RAO F, XU A C, ZHU X F. Change of the circadian effect of LED lighting with age[J]. Chin. J. Lumin., 2016, 37(2):250-255. (in Chinese)
CIE 203:2012 incl. Erratum 1:a computerized approach to reflection transmission and absorption characteristics of the human eye[R]. CIE, 2012.
VANNORREN D, GORGELS T G M F. The action spectrum of photochemical damage to the retina:a review of monochromatic threshold data[J]. Photochem. Photobiol., 2011, 87(4):747-753.
REBEC K M, KLANJEK-GUNDE M, BIZJAK G, et al.. White LED compared with other light sources:age-dependent photobiological effects and parameters for evaluation[J]. Int. J. Occup. Saf. Ergonom., 2015, 21(3):391-398.
ARTIGAS J M, FELIPE A, NAVEA A, et al.. Spectral transmission of the human crystalline lens in adult and elderly persons:color and total transmission of visible light[J]. Invest. Ophthalmol. Vis. Sci., 2012, 53(7):4076-4084.
0
Views
378
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution