HUANG Zhao-ling, BAI Zhong-chen, HAO Li-cai etc. Effect of Isopropyl Alcohol on The Fluorescence of Colloidal CdSe Quantum Dot Clusters[J]. Chinese Journal of Luminescence, 2017,38(6): 715-720
HUANG Zhao-ling, BAI Zhong-chen, HAO Li-cai etc. Effect of Isopropyl Alcohol on The Fluorescence of Colloidal CdSe Quantum Dot Clusters[J]. Chinese Journal of Luminescence, 2017,38(6): 715-720 DOI: 10.3788/fgxb20173806.0715.
Effect of Isopropyl Alcohol on The Fluorescence of Colloidal CdSe Quantum Dot Clusters
the CdSe QDs clusters were synthesized in oleic acid-paraffin system. The quantum dot clusters were modified by isopropyl alcohol
and the fluorescence spectroscopy (PL) and ultraviolet (UV) absorption spectra were studied by using the curve fitting method. Finally
the inner relationship of the changing of optical properties of CdSe QDs clusters was discussed by analyzing the AFM images and Fourier transform infrared spectroscopy of the samples. With the increase of the concentration of isopropanol
the fluorescence peak of QDs appears blue-shift of 11 nm and the blue-shift curve change stepwise. The relative fluorescence intensity increases first and then decreases
and the fluctuation amplitude can reach the maximum of 1 000 a.u.. The first and the second absorption peak of QDs appear red-shift with the increase of the concentration of isopropanol
and the largest red-shift is up to 12 nm.
关键词
Keywords
references
夏涵, 梁盼盼, 府伟灵. 量子点荧光标记在生物医学领域的应用[J]. 中华医院感染学杂志, 2012, 22(20):4675-4677. XIA H, LIANG P P, FU W L. Quantum dot fluorescent tags in the field of biomedical applications[J]. Chin. J. Hospital Infection, 2012, 22(20):4675-4677. (in Chinese)
GOLOBOSTANFARD M R, ABDIZADEH H. Tandem structured quantum dot/rod sensitized solar cell based on solvothermal synthesized CdSe quantum dots and rods[J]. J. Power Sources, 2014, 256(12):102-109.
刘弘伟, LASKAR I R, 黄静萍, 等. 硒化镉发光量子点的制备及其在有机发光器件中的应用[J]. 发光学报, 2005,26(3):321-326.(in English) LIU H W, LASKAR I R, HUANG C P, et al.. Synthesis and applications of luminescent CdSe quantum dots for OLEDs[J]. Chin. J. Lumin., 2005, 26(3):321-326.
CACOVICH S, DIVITINI G, CAPRIA E, et al.. Nanoscale characterisation of hybrid photovoltaic cells based on C61 capped CdSe QDs[C]. J. Phys. Conf. Ser., 2014:12071-12074(4).
SUNG T W, LO Y L, CHANG I L. Highly sensitive and selective fluorescence probe for Cr3+ ion detection using water-soluble CdSe QDs[J]. Sens. Actuators B: Chem., 2014, 202(10):1349-1356.
XUE X, WANG J, SUN M, et al.. Detection of live/dead Staphylococcus aureus cells based on CdSe quantum dots and propidium iodide fluorescent labeling[J]. Afric. J. Herpetol., 2016, 6(12):21-32.
杨啟源, 朱琳琳, 乐秀秀,等. 聚合物表面修饰量子点的合成及应用研究进展[J]. 广西师范学院学报(自然科学版), 2016, 33(1):59-63. YANG Q Y, ZHU L L, LE X X, et al.. Polymer synthesis and application research progress of surface modification of quantum dots[J]. J. Guang Xi Normal Univ. (Nat. Sci. Ed.), 2016, 33(1):59-63. (in Chinese)
DUBERTRET B, SKOURIDES P, NORRIS D J, et al.. In vivo imaging of QDs encapsulated in phospholipid micelles[J]. Science, 2002, 298(5599):1759-1762.
WANG Y A, LI J J, CHEN H, et al.. Stabilization of inorganic nanocrystals by organic dendrons[J]. J. Am. Chem. Soc., 2002, 124(124):2293-2298.
GUO W Z, PENG X G. Nanocrystal in dendron-box:a versatile solution to the chemical, photochemical, and thermal instability of colloidal nanocrystals[J]. Comptes Rendus Chimie, 2003, 6(8):989-997.
ZHAN N, PALUI G, SAFI M, et al.. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots[J]. J. Am. Chem. Soc., 2013, 135(37):13786-95.
ZHU H, HU M Z, SHAO L, et al.. Synthesis and optical properties of thiol functionalized CdSe/ZnS (core/shell) quantum dots by ligand exchange[J]. J. Nanomater., 2014, 2014(17):1-14.
JOSHI K V, JOSHI B K, PANDYA A, et al.. Calixarene capped ZnS quantum dots as an optical nanoprobe for detection and determination of menadione[J]. Analyst, 2012, 137(20):4647-50.
DENG Z T, CAO L, TANG F Q, et al.. A new route to zinc-blende cdse nanocrystals:mechanism and synthesis[J]. J. Phys.Chem. B, 2005, 109:16671-16675.
BAI Z, HAO L, ZHANG Z, et al.. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal cdse quantum dots using scanning near-field optics microscopy[J]. Funct. Mater. Lett., 2016, 9:1650040-1-4.
WEI H, ZHOU J, ZHANG L, et al.. The core/shell structure of CdSe/ZnS quantum dots characterized by X-ray absorption fine spectroscopy[J]. J. Nanomater., 2015, 2015(3):1-7.
孙娇. 硒化镉量子点的表面修饰及相关性质的理论研究[D]. 福建:厦门大学, 2010. SUN J. Theoretical Study on The Surface Modification and The Related Properties of CdSe QDs [D]. Fujian:Graduate Xia Men University. 2010. (in Chinese)
MICHAEL J B, Ⅱ, MCBRIDE J R, et al.. White-light emission from magic-sized cadmium selenide nanocrystals[J]. J. Am. Chem. Soc., 2006, 37(5):15378-9.
YANG W H, YAN S L, WEI C, et al.. A greener synthetic route to oleylamine/oleic acid capped CdSe quantum dots[J]. J. Instrum. Anal., 2010, 29(1):1-5.
宋秋明, 吕明昌, 谭兴,等. H/Al共掺杂对ZnO基透明导电薄膜光电性质和晶体结构的影响[J]. 发光学报, 2014, 35(4):393-398. SONG Q M, LV M C, TAN X, et al.. Effects of H/Al co doping on the optoelectronic properties and crystal structure of ZnO based transparent conductive films[J]. Chin. J. Lumen., 2014, 35(4):393-398. (in Chinese)
KILINA S, IVANOV S, TRETIAK S. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters[J]. J. Am. Chem. Soc., 2009, 131(22):7717-26.
JEONG S, ACHENMNN M, NANDA J, et al.. Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots[J]. J. Am. Chem. Soc., 2005, 127(29):10126-10127.
XING Y, CHAUDRY Q, SHEN C, et al.. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry[J]. Nat. Protocols, 2007, 2(5):1152-65.
NGUYEN NGOC T, QUYNH-PHUONG L, BUI THANH S, et al.. Enhanced fluorescence, morphological and thermal properties of CdSe/ZnS quantum dots incorporated in silicone resin[J]. J. Nanosci. Nanotechnol., 2013, 13(1):434-442.
SINGH D K, IYER P K, GIRI P K. Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes[J]. Carbon, 2012, 50(12):4495-4505.