LI Jia, HUANG Wen-qi, ZHANG Peng etc. Comparative Studies on The Optical Properties of Different Strained Ge:A First-principles Calculation[J]. Chinese Journal of Luminescence, 2017,38(6): 702-708
LI Jia, HUANG Wen-qi, ZHANG Peng etc. Comparative Studies on The Optical Properties of Different Strained Ge:A First-principles Calculation[J]. Chinese Journal of Luminescence, 2017,38(6): 702-708 DOI: 10.3788/fgxb20173806.0702.
Comparative Studies on The Optical Properties of Different Strained Ge:A First-principles Calculation
To explore the changes of the optical properties for Ge in different orientations and different strains
we performed the first principle calculations based on density functional theory combined with GGA+U approach. The results show that Ge undergoes a transition from indirect- to direct-gap on uniaxially tensile strains (along [100]
[110] and [111] directions) and biaxially tensile strains (parallel to (100)
(110) planes).The band gaps of Ge with uniaxially strains (along [110] and [111] directions) are higher than those with biaxially strains
and the transition points of uniaxially strains are lower than those of biaxially strains. Under uniaxially and biaxially compressive strains
the changes of dielectric constants and loss factors of Ge between the frequency bands are both negligible. However
the dielectric constants and loss factors rise first and then fall in a definite range of strains when Ge is under uniaxially and biaxially tensile strains. Compared with unstrained Ge
Ge under [111] 1.22% strain possesses excellent optical properties: reasonable forbidden bandwidth
higher static dielectric
higher absorption coefficient
lower loss function and lower strains.
关键词
Keywords
references
HUANG W Q, CHENG B W, XUE C L, et al.. Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn:a first-principles calculation with GGA+U approach[J]. J. Appl. Phys., 2015, 118(16):165704.
KOUVETAKIS J, MENENDEZ J, CHIZMESHYA A V G. Tin-based group Ⅳ semiconductors:new platforms for opto-and microelectronics on silicon[J]. Mater. Res., 2006, 36:497-554.
PEI Y, WU H B. Effect of uniaxial strain on the structural, electronic and elastic properties of orthorhombic BiMnO3[J]. J. Semicond., 2015, 36(3):7-11.
FISCHETTI M V, LAUX S E. Comment on Influence of the doping element on the electron mobility in n silicon[J]. Appl. Phys. 83, 3096(1998)][J]. J. Appl. Phys., 1999, 85(11):7984-7985.
JAIN J R, HRYCIW A, BAER T M, et al.. A micromachining-based technology for enhancing germanium light emission via tensile strain[J]. Nat. Photon., 2012, 6(6):398-405.
CAMACHO-AGUILERA R E, CAI Y, PATEL N, et al.. An electrically pumped germanium laser[J]. Opt. Express, 2012, 20(10):11316-11320.
KASPER E, OEHME M, WERNER J, et al.. Direct band gap luminescence from Ge on Si pin diodes[J]. Front. Optoelect., 2012, 5(3):256-260.
DUTT B, SUKHDEO D S, NAM D, et al.. Roadmap to an efficient germanium-on-silicon laser:strain vs. n-type doping[J]. IEEE Photonics J., 2012, 4(5):2002-2009.
黄诗浩, 李成, 陈城钊, 等. N型掺杂应变Ge发光性质[J]. 物理学报, 2012, 61(3):036202-1-8. HUANG S H, LI C, CHEN C Z, et al.. The optical property of tensile-strained n-type doped Ge[J].Acta Phys. Sinica, 2012, 61(3):036202-1-8. (in Chinese)
TAHINI H, CHRONEOS A, GRIMES R W, et al.. Strain-induced changes to the electronic structure of germanium[J]. J. Phys. Condens. Matter, 2012, 24(19):195802-1-4.
GAO Y B, CHEN Z L, LI J G, et al.. Genetic landscape of esophageal squamous cell carcinoma[J]. Nat. Genet., 2014, 46(10):1097-1102.
CHEN J M, SHU B, WU J B, et al.. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode[J]. J. Semicond., 2015, 36(10):65-68.
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B:Condens. Matter, 1999, 59(3):1758-1775.
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B:Condens. Matter, 1976, 13(12):5188-5192.
MAEDA Y. Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix:evidence in support of the quantum-confinement mechanism[J]. Phys. Rev. B:Condens. Matter, 1995, 51(3):1658-1670.
SINGH H P. Determination of thermal expansion of germanium, rhodium and iridium by X-rays[J]. Acta Crystallogr. A, 1968, 24(4):469-471.
DIETZE W, SCHULZ M, WEISS H, et al.. Technology of Si, Ge, and SiC/Technologie von Si,Ge und SiC [M]. Berlin Heidelberg:Springer, 1984.
ASPNES D E. Schottky-barrier electroreflectance of Ge:nondegenerate and orbitally degenerate critical points[J]. Phys. Rev. B:Condens. Matter, 1975, 12(6):2297-2310.
SZE S. Physics of semiconductor devices[J]. J. Appl. Polym. Sci., 1970, 14(9):2427-2428.
BOZTUG C, SNCHEZ-PREZ J R, SUDRADJAT F F, et al.. Tensilely strained germanium nanomembranes as infrared optical gain media[J]. Small, 2013, 9(4):622-630.
LIU L, ZHANG M, HU L J, et al.. Effect of tensile strain on the electronic structure of Ge:a first-principles calculation[J]. J. Appl. Phys., 2014, 116(11):113105-1-6.
YANG C H, YU Z Y, LIU Y M, et al.. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains[J]. Phys. BCondens. Matter, 2013, 427:62-67.
YANG J Y, LIU L H, TAN J Y. Temperature-dependent dielectric function of germanium in the UV-Vis spectral range:a first-principles study[J]. J. Quant. Spectrosc. Radiat. Transf., 2014, 141:24-30.
李向娜, 黄翀, 李颖. 全球锗资源供需格局分析[J]. 中国矿业, 2016, 25(S1):13-17. LI X N, HUANG C, LI Y. Analysis of global germanium resources supply and demand pattern[J]. China Min. Mag., 2016, 25(S1):13-17. (in Chinese)
First Principle Calculation of The Electronic Structure and Optical Properties of Rh-doped Ru2Si3 Semiconductors
Research Progress on Synthesis, Regulation and Applications of Long-wavelength Emission Carbon Dots
A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study
First-principle Study of Electronic and Optical Properties of Inorganic Perovskite Cs2SnI6 for Solar Cells
First-principles Investigation on Electronic Structure and Optical Properties of CdSexS1-x
Related Author
CUI Dong-meng
JIA Rui
XIE Quan
ZHAO Ke-jie
CHEN Jinliang
QU Dan
ZHAO Wenxin
AN Li
Related Institution
Institute of Microelectronics of Chinese Academy of Sciences
Institute of New type Optoelectronic Materials and Technology, Guizhou University
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental Science and Engineering, College of Chemistry and Life Sciences, Beijing University of Technology
Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University