浏览全部资源
扫码关注微信
1. 新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
2. 中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室,湖北 武汉,430071
Received:07 November 2016,
Revised:19 January 2017,
Published:05 May 2017
移动端阅览
布玛丽亚·阿布力米提, 向梅. 飞秒时间分辨实验中泵浦-探测交叉相关函数的测量和时间零点的确定[J]. 发光学报, 2017,38(5): 648-654
Bumaliya·ABULIMITI, XIANG Mei. Determine The Pump-probe Cross Correlation Function and The Zero of Time of The Pump and Probe Laser in Femtosecond Time-resolved Studies[J]. Chinese Journal of Luminescence, 2017,38(5): 648-654
布玛丽亚·阿布力米提, 向梅. 飞秒时间分辨实验中泵浦-探测交叉相关函数的测量和时间零点的确定[J]. 发光学报, 2017,38(5): 648-654 DOI: 10.3788/fgxb20173805.0648.
Bumaliya·ABULIMITI, XIANG Mei. Determine The Pump-probe Cross Correlation Function and The Zero of Time of The Pump and Probe Laser in Femtosecond Time-resolved Studies[J]. Chinese Journal of Luminescence, 2017,38(5): 648-654 DOI: 10.3788/fgxb20173805.0648.
飞秒激光技术的出现使得实时探测与跟踪激发态超快弛豫动力学过程成为可能,并能够给出激发态动力学过程清晰的物理图像。而在飞秒时间分辨实验中,泵浦-探测相关函数和时间零点直接影响实验结果的可靠性和准确性。本文结合飞秒激光在分子激发态超快动力学过程中的应用进展,介绍了根据实验条件和要求,在具体实验过程中泵浦-探测相关函数测量和时间零点确定的几种方法。实验中选择可见光作为泵浦光和探测光时,可以通过测定随泵浦-探测时间延迟变化的泵浦激光与探测激光的和频/差频光强来确定泵浦探测交叉相关函数和时间零点;而选择中心波长在紫外甚至真空紫外的激光脉冲作为泵浦光或探测光时,泵浦-探测交叉相关函数通常采用校正的方法测量。
Femtosecond laser technique
not only makes the observation of excited state relaxation processes more directly
but also offers information for disentangle the complex dynamics of excited state relaxation processes. However
what have an explosive impact on accuracy and reliability of experimental result is that cross correlation function as well as the zero of time of the pump and probe laser pulses
therefore
determine the correct value of them is the most vital process in the experiment. Examples of applying the femtosecond pump-probe technique is presented to study the relaxation dynamics of the molecular excited states
by what
on the basis of experimental conditions and requirements
the paper introduced approaches of determine the cross correlation function as well as the zero of time of the pump and probe laser pulse in the course of concrete femtosecond time-resolved experiments. For the pump and the probe laser pulses in the visible light range
by way of delay time of the pump and the probe pulses
we could apply optical technique to detect the transient of the intensity of the second harmonic generation. Yet
for the determination of correlation function as well as the zero of time for the ultrafast pulses in the UV or the VUV
calibration method would be an ideal method.
尹淑慧. 飞秒实时探测技术研究小分子里德堡态动力学 [D]. 大连: 中国科学院大连化学物理研究所, 2003. YIN S H. Femtosecond Real Time Probe Technique to Investigate The Rydberg States Dynamics of Small Molecules [D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2003. (in Chinese)
张扬, 钱静, 李鹏飞, 等. 飞秒激光诱导的Mn2+掺杂锗酸盐玻璃上转换发光 [J]. 发光学报, 2015, 36(7):738-743. ZHANG Y, QIAN J, LI P F, et al.. Upconversion luminescence of Mn2+ doped-germanate glass induced by femtosecond laser pulses [J]. Chin. J. Lumin., 2015, 36(7):738-743. (in Chinese)
NOLLER B, POISSON L, MAKSIMENKA R, et al.. Femtosecond dynamics of isolated phenylcarbenes [J]. J. Am. Chem. Soc., 2008, 130(45):14908-14909.
ABULIMITI B, ZHU R S, QIU X J, et al.. Studies of ultrafast dynamics of 3-picoline with femtosecond time-resolved photoelectron Imaging [J]. Acta Phys.-Chim. Sinica, 2014, 30(1):22-27.
LIU Z M, WANG Y M, HU C L, et al.. Photodissociation dynamics of 2-iodotoluene investigated by femtosecond time-resolved mass spectrometry [J]. Chin. J. Chem. Phys., 2016, 29(1):53-58.
ZEWAIL A H. Femtochemistry: atomic-scale dynamics of the chemical bond [J]. J. Phys. Chem. A, 2000, 104(24):5660-5694.
LI B L, MYERS A B. Emission polarization in the S3 state of CS2 vapor as a probe of predissociation: consideration of the finite bandwidth of the incident field [J]. J. Chem. Phys., 1991, 94(4):2458-2468.
闫焱, 李凌. 飞秒激光照射金箔的分子动力学模拟 [J]. 光学学报, 2016, 36(8):0814001-1-6. YAN Y, LI L. Molecular dynamics simulation of femtosecond laser irradiating gold foils [J]. Acta Opt. Sinica, 2016, 36(8):0814001-1-6. (in Chinese)
李晨, 程光华. 飞秒激光诱导金属钨表面周期性自组织结构的研究 [J]. 光学学报, 2016, 36(5):0532001-1-6. LI C, CHENG G H. Investigation of femtosecond laser induced periodic surface structure on tungsten [J]. Acta Opt. Sinica, 2016, 36(5):0532001-1-6. (in Chinese)
XU Y Q, QIU X J, ABULIMITI B, et al.. Energy transfer of ethyl iodine studied by time-resolved photoelectron imaging [J]. Chem. Phys. Lett., 2012, 554:53-56.
LIU Y Z, TANG B F, SHEN H, et al.. Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging [J]. Opt. Express, 2010, 18(6):5791-5801.
DING Z H, QIU X J, XU Y Q, et al.. Ultrafast internal conversion dynamics of benzyl chloride by femtosecond time-resolved photoelectron imaging [J]. Acta Phys.-Chim. Sinica, 2012, 28(12):2761-2766.
LONG J Y, QIN C C, LIU Y Z, et al.. Direct imaging of the Fermi resonance interaction in para-difluorobenzene: a special insight into energy redistributions in the S1 low-energy regime [J]. Phys. Rev. A, 2011, 84(6):063409.
LUCAS M, LIU Y L, BRYANT R, et al.. Vacuum ultraviolet photodissociation dynamics of methanol at 121.6 nm [J]. Chem. Phys. Lett., 2015, 619:18-22.
ABULIMITI B, ZHU R S, LONG J Y, et al.. Study on ultrafast dynamics of 2-picoline by femtosecond time-resolved photoelectron imaging [J]. J. Chem. Phys., 2011, 134(23):234301-1-6.
LONG J Y, LIU Y Z, QIN C C, et al.. Real-time visualization of the dynamic evolution of CS2 4d and 6s Rydberg wave packet components [J]. Opt. Express, 2011, 19(5):4542-4552.
LIU S Y, OGI Y, FUJI T, et al.. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser [J]. Phys. Rev. A, 2010, 81(3):031403.
ALLISON T K, WRIGHT T W, STOOKE A M, et al.. Femtosecond spectroscopy with vacuum ultraviolet pulse pairs [J]. Opt. Lett., 2010, 35(21):3664-3666.
KIRKBY O M, SALA M, BALERDI G, et al.. Comparing the electronic relaxation dynamics of aniline and d7-aniline following excitation at 272-238 nm [J]. Phys. Chem. Chem. Phys., 2015, 17(25):16270-16276.
POULLAIN S M, GONZLEZ M G, SAMARTZIS P C, et al.. New insights into the photodissociation of methyl iodide at 193 nm: stereodynamics and product branching ratios [J]. Phys. Chem. Chem. Phys., 2015, 17(44):29958-29968.
CORRALES M E, LORIOT V, BALERDI G, et al.. Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction [J]. Phys. Chem. Chem. Phys., 2014, 16(19):8812-8818.
HORIO T, SPESYVTSEV R, NAGASHIMA K, et al.. Full observation of ultrafast cascaded radiationless transitions from S2(*) state of pyrazine using vacuum ultraviolet photoelectron imaging [J]. J. Chem. Phys., 2016, 145(4):044306.
SPESYVTSEV R, HORIO T, SUZUKI Y I, et al.. Excited-state dynamics of furan studied by sub-20-fs time-resolved photoelectron imaging using 159-nm pulses [J]. J. Chem. Phys., 2015, 143(1):014302.
SHEN H, ADACHI S, HORIO T, et al.. Two-color deep-ultraviolet 40-fs pulses based on parametric amplification at 100 kHz [J]. Opt. Express, 2011, 19(23):22637-22642
WU G R, NEVILLE S P, SCHALK O, et al.. Excited state non-adiabatic dynamics of pyrrole: a time-resolved photoelectron spectroscopy and quantum dynamics study [J]. J. Chem. Phys., 2015, 142(7):074302.
布玛丽亚阿布力米提. 含氮芳香烃化合物的非绝热动力学研究 [D]. 武汉: 中国科学院大学(武汉物理与数学研究所), 2013. BUMALIYA A. Study of Nonadiabatic Dynamics of Nitrogen-containing Aromatic Compounds [D]. Wuhan: Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences, 2013. (in Chinese)
尹淑慧, 刘红平, 张建阳, 等. 飞秒时间分辨质谱方法研究CF3I光电离动力学 [J]. 化学物理学报, 2003, 16(1):3-8. YIN S H, LIU H P, ZHANG J Y, et al.. Studies of photoionization of CF3I by femtosecond time-resolved mass spectrometry [J]. Chin. J. Chem. Phys., 2003, 16(1):3-8. (in Chinese)
BARONAVSKI A P, OWRUTSKY J C. Lifetime of the S3 state of CS2 measured by femtosecond ultraviolet multiphoton ionization spectroscopy [J]. Chem. Phys. Lett., 1994, 221(5-6):419-425.
0
Views
487
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution