浏览全部资源
扫码关注微信
牡丹江师范学院物理与电子工程学院, 黑龙江省超硬材料重点实验室,黑龙江 牡丹江,157011
Received:21 November 2016,
Revised:07 December 2016,
Published:05 May 2017
移动端阅览
张冰, 张磊, 张蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017,38(5): 623-629
ZHANG Bing, ZHANG Lei, ZHANG Lei. Temperature Effect on PbSe Quantum Dot-doped Liquid Core Fiber[J]. Chinese Journal of Luminescence, 2017,38(5): 623-629
张冰, 张磊, 张蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017,38(5): 623-629 DOI: 10.3788/fgxb20173805.0623.
ZHANG Bing, ZHANG Lei, ZHANG Lei. Temperature Effect on PbSe Quantum Dot-doped Liquid Core Fiber[J]. Chinese Journal of Luminescence, 2017,38(5): 623-629 DOI: 10.3788/fgxb20173805.0623.
采用三能级系统的速率方程和功率传输方程并考虑温度对各项参数的影响,求解在不同的光纤长度和量子点掺杂浓度时,3.3 nm PbSe量子点液芯光纤的发射光谱随温度的变化。发现当光纤长度不同时,随着温度的升高,光谱的峰值位置以相近的速率发生红移,光谱的峰值强度下降。对于较长的光纤,其光强随温度升高的衰减速率较大。当掺杂浓度不同时,随着温度的升高,光谱的峰值位置以相近的速率发生红移,峰值强度以相近的速率衰减。
Three-level system-based rate equation and power transfer equation were used to solve the temperature dependent emission spectral properties for 3.3 nm PbSe quantum dot doped liquid core fiber under different fiber length and doping concentration
considering the effect of the temperature on the parameters.It is found that the spectral peak position shifts to the red in a similar red shift rate with the temperature increasing
in the case of different fiber length. For the longer fiber
the spectral peak intensity decreases in a larger decline rate. In the case of different doping concentration
with the temperature increasing
the spectral peak position shifts to the red in a similar red shift rate
and the spectral peak intensity decreases in a similar decline rate.
WISE F W. Lead salt quantum dots: the limit of strong quantum confinement [J]. Acc. Chem. Res., 2000, 33(11):773-780.
CHENG C. A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise [J]. J. Lightw. Technol., 2008, 26(11):1404-1410.
ARDAKANI A G, MAHDAVI S M, BAHRAMPOUR A R. Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots [J]. Appl. Opt., 2013, 52(6):1317-1324.
SPRINGHOLZ G, SCHWARZL T, HEISS W, et al.. Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers [J]. Appl. Phys. Lett., 2001, 79(9):1225-1227.
JORGE P, MARTINS M A, TRINDADE T, et al.. Optical fiber sensing using quantum dots [J]. Sensors, 2007, 7(12):3489-3534.
聂慧丽, 李若平, 李海柱, 等. 掺杂PbSe/PVA量子点的光致聚合物全息特性 [J]. 光子学报, 2015, 44(4):0409002. NIE H L, LI R P, LI H Z, et al.. Holographic properties of photopolymer doped PbSe/PVA quantum dots [J]. Acta Photon. Sinica, 2015, 44(4):0409002. (in Chinese)
HREIBI A, GRME F, AUGUSTE J L, et al.. Semiconductor-doped liquid-core optical fiber [J]. Opt. Lett., 2011, 36(9):1695-1697.
CHENG C, BO J F, YAN J H, et al.. Experimental realization of a PbSe-quantum-dot doped fiber laser [J]. IEEE Photonic Technol. Lett., 2013, 25(6):572-575.
ZHANG L, ZHANG Y, KERSHAW S V, et al.. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 m telecommunication wavelengths [J]. Nanotechnology, 2014, 25(10):105704.
ZHANG L, ZHANG Y, WU H, et al.. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber [J]. J. Nanopart. Res., 2013, 15(10):1-10.
ZHANG L, ZHANG B, LI S, et al. Stimulated emission and optical gain in PbSe quantum dot-doped liquid-core optical fiber based on multi-exciton state [J]. Opt. Commun., 2016, 369:171-178.
WU H, ZHANG Y, YAN L, et al.. Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber [J]. Opt. Mater. Express, 2014, 4(9):1856-1865.
顾鹏飞. 胶质PbSe量子点温度依赖的发光特性及其应用 [D]. 长春: 吉林大学, 2013. GU P F. Temperature-dependent Optical Propetries of Colloidal PbSe Quantum Dots and Its Applications [D]. Changchun: Jilin University, 2013. (in Chinese)
王芳荣, 范文勇, 翟微微, 等. PbSe胶质纳米晶温度依赖的光谱特性研究 [J]. 光谱学与光谱分析, 2013, 32(5):1153-1156. WANG F R, FAN W Y, ZHAI W W, et al.. Investigation of the temperature-dependent spectral characteristics of colloidal PbSe nanocrystals [J]. Spectr. Spect. Anal., 2013, 33(5):1153-1156. (in Chinese)
CHENG C, ZHANG H. Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier [J]. Opt. Commun., 2007, 277(2):372-378.
HARBOLD J M, DU H, KRAUSS T D, et al.. Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals [J]. Phys. Rev. B, 2005, 72(19):195312.
JIANG C. Ultrabroadband gain characteristics of a quantum-dot-doped fiber amplifier [J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(1):140-144.
张宇. 胶质PbSe半导体纳米晶的光学性质研究 [D]. 长春: 吉林大学, 2010. ZHANG Y. Optical Properties of Colloid PbSe Semiconductor Nanocrystals [D]. Changchun: Jilin University, 2010. (in Chinese)
DAI Q Q, ZHANG Y, WANG Y N, et al.. Size-dependent temperature effects on PbSe nanocrystals [J]. Langmuir, 2010, 26(13):11435-11440.
MORELLO G, DE GIORGI M, KUDERA S, et al.. Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots [J]. J. Phys. Chem. C, 2007, 111(16):5846-5849.
0
Views
158
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution