浏览全部资源
扫码关注微信
1. 泰山学院物理与电子工程学院, 山东 泰安 271021
2. 北京交通大学光电子技术研究所, 北京 100044
Received:21 August 2016,
Revised:19 January 2017,
Published:05 May 2017
移动端阅览
肖静, 邓振波,. 基于一种新型杂化阳极修饰层的高效有机电致发光器件[J]. 发光学报, 2017,38(5): 601-605
XIAO Jing, DENG Zhen-bo,. Efficiency Enhancement Utilizing A Hybrid Anode Buffer Layer in Organic Light-emitting Devices[J]. Chinese Journal of Luminescence, 2017,38(5): 601-605
肖静, 邓振波,. 基于一种新型杂化阳极修饰层的高效有机电致发光器件[J]. 发光学报, 2017,38(5): 601-605 DOI: 10.3788/fgxb20173805.0601.
XIAO Jing, DENG Zhen-bo,. Efficiency Enhancement Utilizing A Hybrid Anode Buffer Layer in Organic Light-emitting Devices[J]. Chinese Journal of Luminescence, 2017,38(5): 601-605 DOI: 10.3788/fgxb20173805.0601.
设计了基于Bphen∶LiF、Al和MoO
3
的杂化电荷注入层,并将其应用于有机电致发光器件中。实验研究表明,这种杂化层作为阳极修饰层是非常有效的,它可以增加器件中载流子注入的平衡性,提高器件的性能。相对参考器件,基于杂化阳极修饰层的电致发光器件的最大电流效率和最大功率效率均提高1.3倍左右。我们对器件性能及其提高的机理进行了分析。
We report the incorporation of lithium fluoride doped 4
7-diphenyl-1
10-phenanthroline (Bphen LiF)
Al
and molybdenum trioxide (MoO
3
) which is utilized to form the charge injection buffer layer in single-unit organic light-emitting devices (OLEDs). This hybrid buffer layer at the anode/organic interface was found to be very effective
which increased accumulation of holes at the NPB-buffer interface to improve the balance of the carrier injection. Both the maximum current efficiency and maximum power efficiency of the device were improved by 1.3 times. The results strongly indicate that carrier injection ability and balance shows a key significance in device performance.
SUN Y R, GIEBINK N C, KANNO H, et al.. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440(7086):908-912.
XIAO J, LIU X K, WANG X X, et al.. Tailoring electronic structure of organic host for high-performance phosphorescent organic light-emitting diodes [J]. Org. Electron., 2014, 15(11):2763-2768.
XIAO J, LV Z Y, LIU X K, et al.. Highly efficient green and red phosphorescent OLEDs using novel bipolar blue fluorescent materials as hosts [J]. Synth. Met., 2014, 193:89-93.
XIAO J. Balancing the white emission of OLEDs by a tandem structure with an effective charge generation layer [J]. Synth. Met., 2013, 172:11-13.
XIAO J, WANG X X, ZHU H, et al.. Efficiency enhancement utilizing hybrid charge generation layer in tandem organic light-emitting diodes [J]. Appl. Phys. Lett., 2012, 101(1):013301-1-4.
XIAO J, DENG Z B. Synthesis and electroluminescent characterization of a symmetric starburst orange-red light material [J]. J. Lumin., 2012, 132(11):2863-2867.
XIAO J, DENG Z B, LIANG C J, et al.. Effect of LiF buffer layer on the performance of organic electroluminescent devices [J]. Phys. E, 2005, 28(3):323-327.
L Z Y, DENG Z B, CHEN Z, et al.. The effect of various electrodes on the properties of electroluminescent devices with potassium chloride inside tris (8-hydroxyquinoline) aluminum [J]. Displays, 2011, 32(3):113-117.
ZOU Y, DENG Z B, XU D H, et al.. Enhanced performance in organic light-emitting diode by utilizing MoO3-doped C60 as effective hole injection layer [J]. Synth. Met., 2012, 161(23-24):2628-2631.
LEE S T, GAO Z Q, HUNG L S. Metal diffusion from electrodes in organic light-emitting diodes [J]. Appl. Phys. Lett., 1999, 75(10):1404-1406.
LU H W, TSAI C C, HONG C S, et al.. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes [J]. Appl. Surf. Sci., 2016, 385:139-144.
LU H W, KAO P C, CHU SY. The effects of UV-ozone treated ultra-thin Li2CO3-doped NiO film as the anode buffer layer on the electrical characteristics of organic light-emitting diodes [J]. J. Alloys Compd., 2016, 682:311-317.
LI F, TANG H, SHINAR J, et al.. Effects of aquaregia treatment of indium-tin-oxide substrates on the behavior of double layered organic light-emitting diodes [J]. Appl. Phys. Lett., 1997, 70(20):2741-2743.
YU H Y, FENG X D, GROZEA D, et al.. Surface electronic structure of plasma-treated indium tin oxides [J]. Appl. Phys. Lett., 2001, 78(17):2595-2597.
CHOI H W, KIM S Y, KIM W K, et al.. Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer [J]. Appl. Phys. Lett., 2005, 87(8):082102-1-3.
DENG Z B, DING X M, LEE S T, et al.. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers [J]. Appl. Phys. Lett., 1999, 74(15):2227-2229.
TANG H, LI F, SHINAR J. Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes [J]. Appl. Phys. Lett., 1997, 71(18):2560-2562.
HUNG L S, TANG C W, MASONM G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70(2):152-154.
VAN SLYKE S A, CHEN C H, TANG C W. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996, 69(15):2160-2162.
SON M J, KIM S, KWON S, et al.. Interface electronic structures of organic light-emitting diodes with WO3 interlayer: a study by photoelectron spectroscopy [J]. Org. Electron., 2009, 10(4):637-642.
ZHANG D D, FENG J, CHEN L, et al.. Role of Fe3O4 as a p-dopant in improving the hole injection and transport of organic light-emitting devices [J]. IEEE J. Quant. Electron., 2011, 47(5):591-596.
DENG Z B, LV Z Y, CHEN Y L, et al.. Aluminum phthalocyanine chloride as a hole injection enhancer in organic light-emitting diodes [J]. Solid-State Electron., 2013, 89:22-25.
KRUMMACHER B, MATHAI M K, CHOONG V E, et al.. Influence of charge balance and microcavity effects on resultant efficiency of organic-light emitting devices [J]. Org. Electron., 2006, 7(5):313-318.
QI X F, LI N, FORREST S R. Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes [J]. J. Appl. Phys., 2010, 107(1):014514-1-8.
HOFMANN S, THOMSCHKE M, LVSSEM B, et al.. Top-emitting organic light-emitting diodes [J]. Opt. Express, 2011, 19(S6):A1250-A1264.
0
Views
117
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution