Electromagnetic Field Dependence of Quantum Dot Qubit with The Thickness of Quantum Dot
|更新时间:2020-08-12
|
Electromagnetic Field Dependence of Quantum Dot Qubit with The Thickness of Quantum Dot
Chinese Journal of LuminescenceVol. 38, Issue 4, Pages: 552-559(2017)
作者机构:
1. 河北科技师范学院 物理系,河北 秦皇岛,066004
2. 内蒙古民族大学 物理与电子信息学院, 内蒙古 通辽 028043
3. 中国石油大学 化学工程学院 北京,102249
作者简介:
基金信息:
Supported by Natural Science Foundation of Hebei Province (E2013407119);Open Research Foundation of State Key Laboratory of Semiconductor Superlattice (CHJG200701);Scientific research foundation of Hebei Normal University of Science and Technology(1301-2506)
WUYUNQIMUGE, YIN Hong-wu, SU Du etc. Electromagnetic Field Dependence of Quantum Dot Qubit with The Thickness of Quantum Dot[J]. Chinese Journal of Luminescence, 2017,38(4): 552-559
WUYUNQIMUGE, YIN Hong-wu, SU Du etc. Electromagnetic Field Dependence of Quantum Dot Qubit with The Thickness of Quantum Dot[J]. Chinese Journal of Luminescence, 2017,38(4): 552-559 DOI: 10.3788/fgxb20173804.0552.
Electromagnetic Field Dependence of Quantum Dot Qubit with The Thickness of Quantum Dot
the electromagnetic-field dependence of the eigenenergy
the eigenfunctions
and the mean number of phonons of both the ground-state and the first excited-state of the strong-coupling polaron in the quantum dot with the thickness were studied by using the Pekar variational method. On this basis
the quantum dot qubit was formed by means of the two-level structure of the polaron as the carrier. The results of numerical calculation indicate that the oscillation period
T
0
of the qubit increases with the increasing of the thickness
L
of the quantum disk
but decreases with the increasing of the cyclotron frequency
c
of the magnetic field
electric-field strength
F
and electron-phonon coupling strength
.The probability density |
(
z
t
)|
2
of the qubit presents the normal distribution with the variation of the electronic transverse coordinate
. It is significantly influenced by the thickness
L
and effective radius
R
0
of the quantum disk and shows the periodic oscillation with the variation of the electronic longitudinal coordinate
z
polar angle
and time
t
. The decoherence time
increases with the increasing of the cyclotron frequency
c
of the magnetic field
dispersion coefficient
and electron-phonon coupling strength
but decreases with the increasing of the electric-field strength
F
thickness
L
and effective radius
R
0
of the quantum disk. The thickness of the quantum dot is an important parameter of the qubit. Theoretically
the target of regulating the oscillation period
decoherence time and quality factor of the free rotation of the qubit can be achieved by designing the different thickness of the quantum disk and regulating the strength of the electromagnetic field.
关键词
Keywords
references
CIRAC J I, ZOLLER P. Quantum computations with cold trapped ions[J]. Phys. Rev. Lett., 1995, 74(20):4091-4094.
GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298):350-356.
KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681):133-137.
LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Phys. Rev. A, 1998, 57(1):120-126.
邬云文, 邓艳, 周小清, 等. 基于两节点间信息互传的量子特性[J]. 光子学报, 2016, 45(3):0327001. WU Y W, DENG Y, ZHOU X Q, et al.. Quantum properties of information each other between two nods[J]. Acta Photon. Sinica, 2016, 45(3):0327001.(in Chinese)
KYRIAKIDIS J, PENNEY S J. Coherent rotations of a single spin-based qubit in a single quantum dot at fixed Zeeman energy[J]. Phys. Rev. B, 2005, 71(12):125332-1-5.
FURUTA S, BARNES C H W, DORAN C J L. Single-qubit gates and measurements in the surface acoustic wave quantum computer[J]. Phys. Rev. B, 2004, 70(20):205320.
LI S S, LONG G L, BAI F S, et al.. Quantum computing[J]. Proc. Natl. Acad. Sci. U. S. A., 2001, 98(21):11847-11850.
LI S S, XIA J B, LIU J L, et al.. InAs/GaAs single-electron quantum dot qubit[J]. J. Appl. Phys., 2001, 90(12):6151-6155.
CHEN Y J, XIAO J L. The temperature effects on the parabolic quantum dot qubit in the electric field[J]. J. Low Temper. Phys., 2013, 170(1-2):60-67.
SUN Y, DING Z H, XIAO J L. Effects of magnetic field on the coherence time of a parabolic quantum dot qubit[J]. J. Low Temper. Phys., 2014, 177(3-4):151-156.
FOTUE A J, KENFACK S C, TIOTSOP M, et al.. Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential[J]. Eur. Phys. J. Plus, 2016, 131(4):75-1-7.
XIAO W, XIAO J L. Effects of temperature and electric field on the coherence time of a RbCl parabolic quantum dot qubit[J]. Int. J. Theor. Phys., 2016, 55(6):2936-2941.
MEDEIROS-RIBEIRO G, LEONARD D, PETROFF P M. Electron and hole energy levels in InAs self-assembled quantum dots[J]. Appl. Phys. Lett., 1995, 66(14):1767-1769.
KASH K, SCHERER A, WORLOCK J M, et al.. Optical spectroscopy of ultrasmall structures etched from quantum wells[J]. Appl. Phys. Lett., 1986, 49(16):1043-1049.
REED M A, RANDALL J N, AGGARWAL R J, et al.. Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure[J]. Phys. Rev. Lett., 1988, 60(6):535-537.
CHEN C Y, LI W S, TENG X Y, et al. Polaron in a quantum disk[J]. Phys. B:Condens. Matter, 1998, 245(1):92-102.
PEETERS F M, SCHWEIGERT V A. Two-electron quantum disks[J]. Phys. Rev. B, 1996, 53(3):1468-1474.
PRICE R, ZHU X J, SARMA S D, et al.. Laughlin-liquid-Wigner-solid transition at high density in wide quantum wells[J]. Phys. Rev. B, 1995, 51(3):2017-2020.
LEE T D, LOW F E, PINES D. The motion of slow electrons in a polar crystal[J]. Phys. Rev., 1953, 90(2):297-302.
YILDIRIM T, ERCELEBI A. The grounds-state description of the optical polaron versus the effective dimensionality in quantum-well-type systems[J]. J. Phys. Condens. Matter, 1991, 3(10):1271-1277.
SUN Y, DING Z H, XIAO J L. The effect of magnetic field on a quantum rod qubit[J]. J. Low Temp. Phys., 2012, 166(5-6):268-278.