Stability of Amplified Spontaneous Emission of Meso Aromatic Substituted BODIPY Derivatives Films
|更新时间:2020-08-12
|
Stability of Amplified Spontaneous Emission of Meso Aromatic Substituted BODIPY Derivatives Films
Chinese Journal of LuminescenceVol. 38, Issue 4, Pages: 499-506(2017)
作者机构:
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
3. 长春轨道客车股份有限公司,吉林 长春,130062
4. 内蒙古民族大学 化学化工学院,内蒙古 通辽,028000
作者简介:
基金信息:
Supported by Doctoral Fund of Natural Science Foundation of Inner Mongolia(2014BS0205);Doctoral Research Foundation of Inner Mongolia University for the Nationalities(BS311)
LYU Chen-xi, ZHANG Lei, YANG Yang etc. Stability of Amplified Spontaneous Emission of Meso Aromatic Substituted BODIPY Derivatives Films[J]. Chinese Journal of Luminescence, 2017,38(4): 499-506
LYU Chen-xi, ZHANG Lei, YANG Yang etc. Stability of Amplified Spontaneous Emission of Meso Aromatic Substituted BODIPY Derivatives Films[J]. Chinese Journal of Luminescence, 2017,38(4): 499-506 DOI: 10.3788/fgxb20173804.0499.
Stability of Amplified Spontaneous Emission of Meso Aromatic Substituted BODIPY Derivatives Films
The amplified spontaneous emission (ASE) properties of phenyl
naphthyl and anthracene substituted boron dipyrromethene (BODIPY) derivative films were studied
and the factors that influence the ASE stability of BODIPY derivatives were discussed. First
three BODIPY derivatives (PhBOD
NaBOD and EnBOD) materials were doped into polystyrene
from which the films were prepared by spin-coating. The absorption and fluorescence spectra were recorded. The ASE performance of the three samples was measured under the optical pumping
and the ASE thresholds of the materials were obtained. The optical stability
ASE environmental stability and thermal stability of the materials were studied by means of long time pumping
long time placement in the environment and pumping under high temperature environment. Finally
Gaussian 09 was used to calculate the molecular ground state properties. Experimental results show that the initial thresholds of PhBOD
NaBOD and EnBOD films are about 12.4
4.55
3.4 kW/cm
2
respectively. Among them
PhBOD film shows better ASE stability. The difference of ASE stability may be related to the conjugation degree and chemical stability of molecular structure. The ASE stability of the material would be better when the conjugation degree of each group in the molecule is larger
and the Mulliken charge distribution is more symmetrical.
关键词
Keywords
references
HIDE F, SCHWARTZ B J, DAZ-GARCA M A, et al.. Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals[J]. Chem. Phys. Lett., 1996, 256(4-5):424-430.
TESSLER N, DENTON G J, FRIEND R H. Lasing from conjugated-polymer microcavities[J]. Nature, 1996, 382(6593):695-697.
HIDE F, DAZ-GARCA M A, SCHWARTZ B J, et al.. Semiconducting polymers:a new class of solid-state laser materials[J]. Science, 1996, 273(5283):1833-1836.
MCGEHEE M D, GUPTA R, VEENSTRA S, et al.. Amplified spontaneous emission from photopumped films of a conjugated polymer[J]. Phys. Rev. B, 1998, 58(11):7035-7039.
TURNBULL G A, KRAUSS T F, BARNES W L, et al.. Tuneable distributed feedback lasing in MEH-PPV films[J]. Synth. Met., 2001, 121(1-3):1757-1758.
XIA R D, LAI W Y, LEVERMORE P A, et al.. Low-threshold distributed-feedback lasers based on pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms[J]. Adv. Funct. Mater., 2009, 19(17):2844-2850.
XIA R, HELIOTIS G, CAMPOY-QUILES M, et al.. Characterization of a high-thermal-stability spiroanthracenefluorene-based blue-light-emitting polymer optical gain medium[J]. J. Appl. Phys., 2005, 98(8):083101-1-7.
GUO K P, ZHANG Q, WANG F F, et al.. Deep-blue, low-threshold amplified spontaneous emitting and high thermal stability binaphthyl derivates[J]. Phys. Status Solidi A, 2014, 211(10):2372-2377.
BERGMANN A, HOLZER W, STARK R, et al.. Photophysical characterization of pyrromethene dyes in solid matrices of acrylic copolymers[J]. Chem. Phys., 2001, 271(1-2):201-213.
AMAT-GUERRI F, LIRAS M, CARRASCOSO M L, et al.. Methacrylate-tethered analogs of the laser dye PM567-synthesis, copolymerization with methyl methacrylate and photostability of the copolymers[J]. Photochem. Photobiol., 2003, 77(6):577-584.
COSTELA A, GARCA-MORENO I, SASTRE R. Polymeric solid-state dye lasers:recent developments[J]. Phys. Chem. Chem. Phys., 2003, 5(21):4745-4763.
王尉谦, 秦亮, 林涛, 等. F8BT:P3HT共混薄膜放大自发辐射的温度效应[J]. 发光学报, 2016, 37(8):973-978. WANG W Q, QIN L, LIN T, et al.. Temperature dependence of amplified spontaneous emission from blend film of F8BT and P3HT[J]. Chin. J. Lumin., 2016, 37(8):973-978. (in Chinese)
DUARTE F G. Tunable Laser Applications[M]. 2nd ed. England:Taylor & Francis Group, 2008.
ULRICH G, ZIESSEL R, HARRIMAN A. The chemistry of fluorescent bodipy dyes:versatility unsurpassed[J]. Angew. Chem. Int. Ed., 2008, 47(7):1184-1201.
GUGGENHEIMER S C, BOYER G H, THANGARAJ K, et al.. Efficient laser action from two cw laser-pumped pyrromethene-BF2 complexes[J]. Appl. Opt., 1993, 32(21):3942-3943.
SUNAHARA H, URANO Y, KOJIMA H, et al.. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching[J]. J. Am. Chem. Soc., 2007, 129(17):5597-5604.
LOUDET A, BURGESS K. BODIPY dyes and their derivatives:syntheses and spectroscopic properties[J]. Chem. Rev., 2007, 107(11):4891-4932.
张镭, 杨杨, 高劼超, 等. 有机材料EnBOD的放大自发发射性能研究[J]. 发光学报, 2015, 36(6):661-665. ZHANG L, YANG Y, GAO J C, et al.. Study on amplified spontaneous emission properties of EnBOD material[J]. Chin. J. Lumin., 2015, 36(6):661-665. (in Chinese)
BARTHOLOMEW J L, DEBARBER P A, HEEG B, et al.. Development of an organic dye solution for laser cooling by anti-Stokes fluorescence[J]. Mater. Res. Soc. Symp. Proc., 2001, 667:G1.7-1-6.
CLARK J L, RUMBLES G. Laser cooling in the condensed phase by frequency up-conversion[J]. Phys. Rev. Lett., 1996, 76(12):2037-2040.
COSTELA A, GARCA-MORENO I, AGUA D D, et al.. Highly photostable solid-state dye lasers based on silicon-modified organic matrices[J]. J. Appl. Phys., 2007, 101(7):073110-1-11.
YANG W T, PARR R G, LEE C. Various functionals for the kinetic energy density of an atom or molecule[J]. Phys. Rev. A, 1986, 34(6):4586-4590.
HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. J. Chem. Phys., 1977, 66(10):4377-4384.
WIDANY J, FRAUENHEIM T, KHLER T, et al.. Density-functional-based construction of transferable nonorthogonal tight-binding potentials for B, N, BN, BH, and NH[J]. Phys. Rev. B, 1996, 53(8):4443-4452.
OXGAARD J, TENN W J, NIELSEN R J, et al.. Mechanistic analysis of iridium heteroatom C-H activation:evidence for an internal electrophilic substitution mechanism[J]. Organometallics, 2007, 26(7):1565-1567.