浏览全部资源
扫码关注微信
1. 兰州大学物理科学与技术学院 微电子研究所,甘肃 兰州,730000
2. 甘肃省科学院 传感技术研究所,甘肃 兰州,730000
3. 兰州大学 特殊功能材料与结构设计教育部重点实验室,甘肃 兰州,730000
4. 兰州大学 磁学与磁性材料教育部重点实验室,甘肃 兰州,730000
Received:01 November 2016,
Revised:30 November 2016,
Published:05 April 2017
移动端阅览
孙永哲, 郑礴, 李海蓉等. 纳米结构氧化镍缓冲层对蓝色有机发光二极管性能的影响[J]. 发光学报, 2017,38(4): 492-498
SUN Yong-zhe, ZHENG Bo, LI Hai-rong etc. Influence of Nickel Oxide Anode Buffer Nanolayer on Blue Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2017,38(4): 492-498
孙永哲, 郑礴, 李海蓉等. 纳米结构氧化镍缓冲层对蓝色有机发光二极管性能的影响[J]. 发光学报, 2017,38(4): 492-498 DOI: 10.3788/fgxb20173804.0492.
SUN Yong-zhe, ZHENG Bo, LI Hai-rong etc. Influence of Nickel Oxide Anode Buffer Nanolayer on Blue Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2017,38(4): 492-498 DOI: 10.3788/fgxb20173804.0492.
在阳极和空穴传输层分别引入氧化镍纳米结构缓冲层'制备了蓝色有机发光二极管'对二极管的电学和光学特性进行了测试分析'研究了采用电化学方法制备的氧化镍纳米结构对器件的影响。结果表明'纳米结构氧化镍缓冲层能够有效地提高空穴-电子对的产生和复合效率'它的引入带来了高效的空穴注入及发光层中的载流子平衡'能有效提高有机发光二极管的电致发光特性。氧化镍缓冲层沉积时间为30 s的器件具有最高的亮度和电流效率'分别为42 460 cd/m
2
和24 cd/A'该器件的CIE
x'y
色坐标为(0.212 9'0.325 2)。
The electrical and optical properties of blue organic light-emitting diodes fabricated by utilizing nickel-oxide nano buffer layers between the anodes and hole transport layers were investigated. NiO nanolayer on ITO was prepared by the electrochemical methods. The effects of NiO nanolayer on the device performances were studied. The experimental results show that NiO buffer layer can effectively enhance the probability of hole-electron recombination due to an efficient holes injection into and charge balance in an emitting layer. The sample with Ni deposition time of 30 s has the highest luminance of 42 460 cd/m
2
maximum current efficiency of 24 cd/A
and CIE
x
y
coordinates of (0.212 9
0.325 2)
respectively.
YAO J H, ZHEN C G, LOH K P, et al.. Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes[J]. Tetrahedron, 2008, 64(48):10814-10820.
BURROWS P E, GU G, BULOVIC V, et al.. Achieving full-color organic light-emitting devices for lightweight, flat-panel displays[J]. IEEE Trans. Electron Dev., 1997, 44(8):1188-1203.
JEFFREY P, TUKARAM K. Fluorescent-based tandem white OLEDs designed for display and solid-state-lighting applications[J]. J. Soc. Inf. Dis., 2009, 17(10):861-868.
CHEN S M, KWOK H S. Full color organic electroluminescent display with shared blue light-emitting layer for reducing one fine metal shadow mask[J]. Org. Electron., 2012, 13(1):31-35.
CHEN S J, ZHAO X Y, WANG Y R, et al.. White light emission with red-green-blue lasing action in a disordered system of nanoparticles[J]. Appl. Phys. Lett., 2012, 101(12):123508-1-4.
KIM W J, LEE Y H, KIM T Y, et al.. Dependence of efficiency improvement and operating-voltage reduction of OLEDs on thickness variation in the PTFE hole-injection layer[J]. J. Korean Phys. Soc., 2007, 51(3):1007.
KANNO H, HAMADA Y, TAKAHASHI H. Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays[J]. IEEE J. Sel. Top. Quant. Electron., 2004, 10(1):30-36.
FURUKAWA T, NAKANOTANI H, INOUE M, et al.. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs[J]. Sci. Rep., 2015, 5:8429.
IM H C, CHOO D C, KIM T W, et al.. Highly efficient organic light-emitting diodes fabricated utilizing nickel-oxide buffer layers between the anodes and the hole transport layers[J]. Thin Solid Films, 2007, 515(12):5099-5102.
YAMAMORI A, ADACHI C, KOYAMA T, et al.. Doped organic light emitting diodes having a 650-nm-thick hole transport layer[J]. Appl. Phys. Lett., 1998, 72(17):2147-2149.
GROZEA D, TURAK A, YUAN Y, et al.. Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface[J]. J. Appl. Phys., 2007, 101(3):033522-1-6.
WANG Y L, NIU Q L, HU C D, et al.. Ultrathin nickel oxide film as a hole buffer layer to enhance the optoelectronic performance of a polymer light-emitting diode[J]. Opt. Lett., 2011, 36(8):1521-1523.
STEIRER K X, CHESIN J P, WIDJONARKO N E, et al.. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics[J]. Org. Electron., 2010, 11(8):1414-1418.
MEYBODI S M, HOSSEINI S A, REZAEE M, et al.. Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method[J]. Ultrason. Sonochem., 2012, 19(4):841-845.
JUNG K, SEO H, KIM Y, et al.. Temperature dependence of high-and low-resistance bistable states in polycrystalline NiO films[J]. Appl. Phys. Lett., 2007, 90(5):052104-1-3.
OKUYAMA M, KAWAKAMI M, ITO K. Corrosion resistance of iron coated by plasma spray ceramic coatings to molten fluoride[J]. High Temper. Corros. Adv. Mater. Protect. Coat., 1992, 78(2):275-283.
MA H, YIP H L, HUANG F, et al.. Interface engineering for organic electronics[J]. Adv. Funct. Mater., 2010, 20(9):1371-1388.
ZHANG D D, FENG J, LIU Y F, et al.. Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer[J]. Appl. Phys. Lett., 2009, 94(22):223306-1-3.
HAN S C, SHIN W S, SEO M, et al.. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes[J]. Org. Electron., 2009, 10(5):791-797.
WANG H, WU G G, CAI X P, et al.. Effect of growth temperature on structure and optical characters of NiO films fabricated by PA-MOCVD[J]. Vacuum, 2012, 86(12):2044-2047.
MIN K C, KIM M, YOU Y H, et al.. NiO thin films by MOCVD of Ni(dmamb)2, and their resistance switching phenomena[J]. Surf. Coat. Technol., 2007, 201(22-23):9252-9255.
CHAN I M, HONG F C. Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode[J]. Thin Solid Films, 2004, 450(2):304-311.
KIM G P, NAM I, PARK S, et al.. Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes[J]. Nanotechnology, 2013, 24(47):475402.
BENISTY H, DE NEVE H, WEISBUCH C. Impact of planar microcavity effects on light extraction-Part I:basic concepts and analytical trends[J]. IEEE J. Quant. Electron., 1998, 34(9):1612-1631.
0
Views
104
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution