Micro-nano Structures of LED Fabricated by Laser Interference Lithography
|更新时间:2020-08-12
|
Micro-nano Structures of LED Fabricated by Laser Interference Lithography
Chinese Journal of LuminescenceVol. 38, Issue 4, Pages: 470-476(2017)
作者机构:
1. 天津工业大学 电子与信息工程学院 天津,300387
2. 天津市光电检测技术与系统重点实验室, 天津 300387
3. 中国科学院 半导体研究所, 北京 100083
作者简介:
基金信息:
Supported by Natural Science Foundation of Tianjin(14JCQNJC01000);National Natural Science Foundation of China (11404239,61575144,61504093);Open Topics of State Key Laboratory of Integrated Optoelectronics(IOSKL2014KF15)
CHENG Jun-chao, LIU Hong-wei, GENG Zhao-xin etc. Micro-nano Structures of LED Fabricated by Laser Interference Lithography[J]. Chinese Journal of Luminescence, 2017,38(4): 470-476
CHENG Jun-chao, LIU Hong-wei, GENG Zhao-xin etc. Micro-nano Structures of LED Fabricated by Laser Interference Lithography[J]. Chinese Journal of Luminescence, 2017,38(4): 470-476 DOI: 10.3788/fgxb20173804.0470.
Micro-nano Structures of LED Fabricated by Laser Interference Lithography
In order to realize the preparation of large-area periodic micro-nano structures to enhance the luminous efficiency of LEDs
Lloyd laser interference lithography (LIL) system was established. The working principle of LIL system was simply analyzed and the experimental process of preparing the one-dimensional gratings
two-dimensional lattice and hole arrays was introduced. Finally
the nano-structures were transferred into suitable functional substrates for further applications. The experimental results indicate that the uniform gratings or two-dimensional lattice arrays structures with the period of 450 nm
whose duty cycle can also be changed
are successfully fabricated on 20 mm20 mm ITO substrates by using the LIL system.
关键词
Keywords
references
NARENDRAN N, GU Y, FREYSSINIER-NOVA J P, et al.. Extracting phosphor-scattered photons to improve white LED efficiency[J]. Phys. Stat. Sol. (a), 2005, 202(6):R60-R62.
李伟, 岳庆炀, 孔繁敏, 等. 顶端ZnO纳米结构对GaN基LED光提取效率的影响[J]. 光子学报, 2013, 42(4):409-416. LI W, YUE Q M, KONG F M, et al.. Influence of surface ZnO nano-structures on the light emitting efficiency of GaN-based LED[J]. Acta Photon. Sinica, 2013, 42(4):409-416. (in Chinese)
林异株. 利用表面等离激元技术提高发光二极管发光效率的研究[D]. 济南:山东大学, 2011. LIN Y Z. The Research on The Improvement of Lighting Efficiency of LED by Surface Plasmon Technique[D]. Ji'nan:Shandong University, 2011. (in Chinese)
殷子豪. 纳米结构光子晶体提高LED出光效率的研究[D]. 上海:上海交通大学, 2009. YIN Z H. The Enhancement of Light Extraction Efficiency in LED with Nano-structure Photonic Crystal[D]. Shanghai:Shanghai Jiaotong University, 2009. (in Chinese)
彭静, 徐智谋, 吴小峰, 等. 纳米压印技术制备表面光子晶体LED的研究[J]. 物理学报, 2013, 62(3):036104-1-7. PENG J, XU Z M, WU X F, et al.. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography[J]. Acta Phys. Sinica, 2013, 62(3):036104-1-7. (in Chinese)
OKAMOTO K, NIKI I, SHVARTSER A, et al.. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nat. Mater., 2004, 3(9):601-605.
HUH C, CHOI C J, KIM W, et al.. Enhancement in light emission efficiency of Si nanocrystal light-emitting diodes by a surface plasmon coupling[J]. Appl. Phys. Lett., 2012, 100(18):181108-1-5.
乔倩, 单崇新, 刘娟意, 等. 不同密度银纳米粒子对氧化锌基发光二极管发光的增强[J]. 发光学报, 2015, 36(12):1363-1369. QIAO Q, SHAN C X, LIU J Y, et al.. Localized surface plasmon resonance enhanced electroluminescence from ZnO-based light-emitting diodes via optimizing the density of sliver nanoparticles[J]. Chin. J. Lumin., 2015, 36(12):1363-1369. (in Chinese)
崔铮. 微纳米加工技术及其应用综述[J]. 物理, 2006, 35(1):34-39. CUI Z. Overview of micro/nanofabrication technologies and applications[J]. Physics, 2006, 35(1):34-39. (in Chinese)
SATO K. Perspective of micro-nano science and technology[J]. J. Jap. Soc. Mech. Eng., 2013, 116(1130):12-15.
XIA D Y, KU Z Y, LEE S C, et al.. Nanostructures and functional materials fabricated by interferometric lithography[J]. Adv. Mater., 2011, 23(2):147-179.
崔铮, 陶佳瑞. 纳米压印加工技术发展综述[J]. 世界科技研究与发展, 2004, 26(1):7-12. CUI Z, TAO J R. Overview of nanoimprinting technology development[J]. World Sci.-Tech. R&D., 2004, 26(1):7-12. (in Chinese)
CHEN Q, HUBBARD G, SHIELDS P A, et al.. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting[J]. Appl. Phys. Lett., 2009, 94(26):263118-1-3.
MELNGAILIS J. Focused ion beam technology and applications[J]. J. Vac. Sci. Technol. B:Microelectron. Nanometer Struct., 1987, 5(2):469-495.
KANAMORI Y, SASAKI M, HANE K. Broadband antireflection gratings fabricated upon silicon substrates[J]. Opt. Lett., 1999, 24(20):1422-1424.
BODEN S A, BAGNALL D M. Tunable reflection minima of nanostructured antireflective surfaces[J]. Appl. Phys. Lett., 2008, 93(13):133108-1-3.
VAN WOLFEREN H, ABELMANN L. Laser interference lithography[J]. Lithogr. Princ. Proc. Mater., 2011, 23(3):133-148.
KIM H, JUNG H, LEE D H, et al.. Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd's mirror[J]. Appl. Opt., 2016, 55(2):354-359.
BAGHERI S, STROHFELDT N, STERL F, et al.. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography[J]. ACS Sens., 2016, 1(9):1148-1154.
刘娟, 张锦, 冯伯儒. 成像干涉光刻技术与离轴照明光刻技术的对比分析[J]. 半导体学报, 2005, 26(7):1480-1484. LIU J, ZHANG J, FENG B R. Comparison between imaging interferometric lithography and off-axis illumination lithography[J]. Chin. J. Semicond., 2005, 26(7):1480-1484. (in Chinese)
阎杰, 王沛, 谢志国, 等. 利用表面等离子体增强发光二极管发光效率的研究进展[J]. 量子电子学报, 2009, 26(1):1-9. YAN J, WANG P, XIE Z G, et al.. Progress of enhanced emission of light-emitting diode using surface plasmons[J]. Chin. J. Quantum Electron., 2009, 26(1):1-9. (in Chinese)
宋燕. 基于金纳米颗粒局域表面等离子共振吸收(LSPR)生物传感的研究[D]. 苏州:苏州大学, 2010. SONG Y. Study on The Biosensor Based on Local Surface Plasmon Resonance (LSPR) of Gold Nanoparticles[D]. Suzhou:Suzhou University, 2010. (in Chinese)
AC 'IMOVIC ' S S, ORTEGA M A, SANZ V, et al.. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum[J]. Nano Lett., 2014, 14(5):2636-2641.
冯伯儒, 张锦, 宗德蓉, 等. 无掩模激光干涉光刻技术研究[J]. 微纳电子技术, 2002, 39(3):39-42. FENG B R, ZHANG J, ZONG D R, et al.. Study of interferometric lithography without masks[J]. Micronanoelectron. Technol., 2002, 39(3):39-42. (in Chinese)
贺锋涛, 周强, 杨文正, 等. 飞秒激光多光束干涉光刻硅表面减反微结构[J]. 光子学报, 2013, 42(5):515-520. HE F T, ZHOU Q, YANG W Z, et al.. Femtosecond laser multi-beam interference lithography anti-reflective microstructure on silicon surface[J]. Acta Photon. Sinica, 2013, 42(5):515-520. (in Chinese)
WANG Q S, MASAO I, TAN M, et al.. High quality non-rectifying contact of ITO with both Ni and n-type GaAs[J]. J. Semicond., 2015, 36(5):053003-1-5.
程培红. 金属表面等离子体增强硅基半导体材料发光[D]. 杭州:浙江大学, 2009. CHENG P H. Photoluminescence Enhancement of Silicon-based Semiconductor Materials by Coupling with Metal Surface Plasmon[D]. Hangzhou:Zhejiang University, 2009. (in Chinese)
陈健, 王庆康, 李海华. 光子晶体结构参数的随机扰动对光子晶体LED出光效率的研究[J]. 光学学报, 2010, 30(1):233-236. CHEN J, WANG Q K, LI H H. Effect of random perturbation of structural parameters on the light extraction efficiency of light emitling diode with photonic crystal[J]. Acta Opt. Sinica, 2010, 30(1):233-236. (in Chinese)
Design and Optimization of Highly Efficient Light Extraction Encapsulation for Deep Ultraviolet LEDs
Optical Properties of InP/GaP/ZnS Quantum Dots Processed with Hydrofluoric Acid and Their Application in Light Emitting Diodes
Preparation and Research Progress of Lead-free Perovskite Light Emitting Diodes
Advances in Highly Effective Light Extraction Schemes for Organic Light-emitting Diodes
Optoelectronic Properties of InP/ZnSe/ZnS Quantum Dots with Different ZnSe Shell Layer Thicknesses
Related Author
KANG Wenyu
YIN Jun
HUANG Jiaxin
XIANG Leilei
KANG Junyong
CHEN Xiaoli
CHEN Peili
LU Si
Related Institution
Future Display Institute in Xiamen, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Physical Science and Technology, Xiamen University
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
South China Academy of Advanced Optoelectronics, South China Normal University
School of Electronics and Information Engineering, Sun Yat-sen University
School of Microelectronics, South China University of Technology