Influence of PEG Doping on The Perovskite Solar Cells
|更新时间:2020-08-12
|
Influence of PEG Doping on The Perovskite Solar Cells
Chinese Journal of LuminescenceVol. 38, Issue 4, Pages: 457-462(2017)
作者机构:
北京交通大学 光电子技术研究所发光与光信息技术教育部重点实验室, 北京 100044
作者简介:
基金信息:
Supported by Special Fund for Scientific Research of Central University(2014JBZ009);National Natural Science Fundation of China(61274063,61377028,61475014,61475017)
QI Jing-qiang, DENG Zhen-bo, LIU Meng-lin etc. Influence of PEG Doping on The Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(4): 457-462
QI Jing-qiang, DENG Zhen-bo, LIU Meng-lin etc. Influence of PEG Doping on The Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(4): 457-462 DOI: 10.3788/fgxb20173804.0457.
Influence of PEG Doping on The Perovskite Solar Cells
Polyethylene glycol (PEG) was doped into the PEDOT:PSS layer of CH
3
NH
3
PbI
x
Cl
3-
x
perovskite solar cells to improve the power conversion efficiency (PCE) and reduce the hysteresis of the device. The capacitance-voltage (
C-V
) and the current density-time (
J-T
) transient measurements were used to study the charge accumulation and defects between the buffer layer and the active layer. The results show that the short circuit current (
J
sc
)
the open circuit voltage (
V
oc
)
the fill factor (FF)
and the power conversion efficiency (PCE) of the device with PEG are improved. The PCE of the device with PEG reaches 10.0% which is 33% higher than that of the control device and the hysteresis of
J-V
curve is also reduced with the introduction of PEG. PEG can improve the device properties by reducing the charge accumulation and decreasing the defects which is beneficial to electron collection and reducing hysteresis.
关键词
Keywords
references
SEO J, PARK S, KIM Y C, et al.. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells[J]. Energy Environ. Sci., 2014, 7(8):2642-2646.
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
YANG W S, NOH J H, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237.
XI J, WU Z X, DONG H, et al.. Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells[J]. Nanoscale, 2015, 7(24):10699-10707.
CHIANG C H, TSENG Z L, WU C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. J. Mater. Chem. A, 2014, 2(38):15897-15903.
XIAO Z G, BI C, SHAO Y C, et al.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ. Sci., 2014, 7(8):2619-2623.
KIM H B, CHOI H, JEONG J, et al.. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 2014, 6(12):6679-6683.
CHEN Q, ZHOU H P, HONG Z R, et al.. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J. Am. Chem. Soc., 2014, 136(2):622-625.
ZHAO Y X, ZHU K. Three-step sequential solution deposition of PbI2-free CH3NH3PbIM3 perovskite[J]. J. Mater. Chem. A, 2015, 3(17):9086-9091.
ZHANG H, MAO J, HE H X, et al.. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells[J]. Adv. Energy Mater., 2015, 5(23):1501354.
DU Y Y, CAI H K, NI J, et al.. Air-processed, efficient CH3NH3PbI3-xClx perovskite solar cells with organic polymer PTB7 as a hole-transport layer[J]. RSC Adv., 2015, 5(82):66981-66987.
LIU Y, BAG M, RENNA L A, et al.. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells[J]. Adv. Energy Mater., 2016, 6(2):1501606.
YOU J B, HONG Z R, YANG Y, et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8(2):1674-1680.
ZHAO Y X, ZHU K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J. Phys. Chem. C, 2014, 118(18):9412-9418.
JENG J Y, CHIANG Y F, LEE M H, et al.. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Adv. Mater., 2013, 25(27):3727-3732.
WANG K, LIU C, YI C, et al.. Efficient perovskite hybrid solar cells via ionomer interfacial engineering[J]. Adv. Funct. Mater., 2015, 25(44):6875-6884.
HUANG X, WANG K, YI C, et al.. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer[J]. Adv. Energy Mater., 2016, 6(3):1501773.
LANG U, MLLER E, NAUJOKS N, et al.. Microscopical investigations of PEDOT:PSS thin films[J]. Adv. Funct. Mater., 2009, 19(8):1215-1220.
NA S I, WANG G, KIM S S, et al.. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells[J]. J. Mater. Chem., 2009, 19(47):9045-9053.
MCNEILL C R, HWANG I, GREENHAM N C. Photocurrent transients in all-polymer solar cells:trapping and detrapping effects[J]. J. Appl. Phys., 2009, 106(2):024507.
CHO S, KIM K D, HEO J, et al.. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells[J]. Sci. Rep., 2014, 4:4306.
CHEN B B, QIAO X F, LIU C M, et al.. Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells[J]. Appl. Phys. Lett., 2013, 102(19):193302.
ZANG H D, HSIAO Y C, HU B. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis[J]. Phys. Chem. Chem. Phys., 2014, 16(10):4971-4976.