ZHANG Li-zhong, WU Ming-xiao, TIAN Jin-peng etc. Improvement of TiO<sub>2</sub> Cathode Buffer Layer to The Performance of Rubrene/C<sub>70</sub> Organic Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(3): 359-364
ZHANG Li-zhong, WU Ming-xiao, TIAN Jin-peng etc. Improvement of TiO<sub>2</sub> Cathode Buffer Layer to The Performance of Rubrene/C<sub>70</sub> Organic Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(3): 359-364 DOI: 10.3788/fgxb20173803.0359.
Improvement of TiO2 Cathode Buffer Layer to The Performance of Rubrene/C70 Organic Solar Cells
To improve the performance of organic solar cells (OSCs) and enhance their stability in the air
the effect of TiO
2
film as cathode buffer layer on the performance of OSCs was studied. The cells with a structure of ITO/TiO
2
/C
70
/Rubrene/MoO
3
/Al were fabricated. The influence of TiO
2
on the cell was investigated by measuring the device efficiency. The experimental results show that the performance of cell is on the rise with the increase of the thickness of TiO
2
. when the thickness of TiO
2
is 81 nm
the performance parameters are the best (power conversion efficiency current density
open circuit voltage and fill factor are 1.09%
2.55 mAcm
-2
0.88 V
48.69%
respectively)
and the cell performance declines with the continued increasing of TiO
2
thickness. Compared with the device without TiO
2
layer
the optimal
J
sc
V
oc
FF and PCE of the cells increased by 37%
21%
17% and 91%
respectively. and the reasons for the improvement were discussed.
关键词
Keywords
references
YANG J, VAK D, CLARK N, et al.. Organic photovoltaic modules fabricated by an industrial gravure printing proofer[J]. Solar Energy Mater. Solar Cells, 2013, 109:47-55.
PEUMANS P, UCHIDA S, FORREST S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films[J]. Nature, 2003, 425(6954):158-162.
BAEK W H, SEO I, YOON T S, et al.. Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores[J]. Solar Energy Mater. Solar Cells, 2009, 93(9):1587-1591.
WANG J C, WENG W T, TSAI M Y, et al.. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer[J]. J. Mater. Chem., 2010, 20(5):862-866.
ZHANG F J, XU X W, TANG W H, et al.. Recent development of the inverted configuration organic solar cells[J]. Solar Energy Mater. Solar Cells, 2011, 95(7):1785-1799.
HUANG J S, CHOU C Y, LIU M Y, et al.. Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods[J]. Org. Electron., 2009, 10(6):1060-1065.
涂程威, 田金鹏, 吴明晓, 等. PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响[J]. 物理学报, 2015, 64(20):208801-1-6. TU C W, TIAN J P, WU M X, et al.. Influence of PTCBI as cathode modification on the performances of Rubrene/C70 based organic solar cells[J]. Acta Phys. Sinica, 2015, 64(20):208801-1-6. (in Chinese)
TIAN J P, ZHAO C X, WU M X, et al.. Thickness-dependence of S-shaped J-V curves of planar heterojunction organic solar cells containing NTCDA interlayer:impedance-potential measurement and underlying mechanism[J]. Solar Energy Mater. Solar Cells, 2016, 143:39-43.
詹真, 刘彭义, 叶勤, 等. Bathocuproine作为缓冲层改善Rubrene/C70太阳能电池的性能[J]. 光电子激光, 2012, 23(9):1696-1701. ZHAN Z, LIU P Y, YE Q. Performance improvement of Rubrene/C70 based organic solar cells with bathocuproine as buffer layer[J]. J. Optoelectron. Laser, 2012, 23(9):1696-1701. (in Chinese)
ZHAN Z, CAO J, XIE W G, et al.. Role of vanadium pentoxide hole-extracting nanolayer in Rubrene/C70-based small molecule organic solar cells[J]. J. Nanomater., 2014, 2014:964548-1-7.
BARTYNSKI A N, GRUBER M, DAS S, et al.. Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics[J]. J. Am. Chem. Soc., 2015, 137(16):5397-5405.
SCHNEIDEI A, TRUUT N, HAMBURGER M. Analysis and optimization of relevant parameters of blade coating and gravure printing processes for the fabrication of highly efficient organic solar cells[J]. Solar Energy Mater. Solar Cells, 2014, 126:149-154.
GROB S, GRUBER M, BARTYNSKI A N, et al.. Amorphous vs crystalline exciton blocking layers at the anode interface in planar and planar-mixed heterojunction organic solar cells[J]. Appl. Phys. Lett.,2014, 104(21):21330401-1-5.
EO Y S, RHEE H W, CHIN B D, et al.. Influence of metal cathode for organic photovoltaic device performance[J]. Synth. Metals., 2009, 159(17-18):1910-1913.
REESE M O, WHITE M S, RUMBLES G, et al.. Optimal negative electrodes for poly(3-hexylthiophene):[6, 6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices[J]. Appl. Phys. Lett., 2008, 92(5):053307-1-3.
LIN Z H, JIANG C Y, ZHU C X, et al.. Development of inverted organic solar cells with TiO2 interface layer by using low-temperature atomic layer deposition[J]. ACS Appl. Mater. Int., 2013, 5(3):713-718.
DE JONG M P, VAN IJZENDOORN L J, DE VOIGT M J A, et al.. Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett., 2000, 77(14):2255-2257.
GRECZY Z, KUGLER T, KEIL M, et al.. Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend:a mini-review and some new results[J]. J. Electron Spectrosc. Relat. Pheno., 2001, 121(1-3):1-17.
KYAW A K K, SUN X W, JIANG C Y, et al.. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer[J]. Appl. Phys. Lett., 2008, 93(22):221107-1-3.
WHITE M S, OLSON D C, SHAHEEN S E, et al.. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer[J]. Appl. Phys. Lett., 2006, 89(14):143517-1-3.
HE Z C, ZHONG C M, SU S J, et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012, 6(9):593-597.
CHEN X B, MAO S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J]. Chem. Rev., 2007, 107(7):2891-2959.
SUN C M, WU Y L, ZHANG W J, et al.. Improving efficiency by hybrid TiO2 nanorods with 1, 10-Phenanthroline as a cathode buffer layer for inverted organic solar cells[J]. ACS Appl. Mater. Int., 2014, 6(2):739-744.
XIONG J, YANG J L, YANG B C, et al.. Efficient and stable inverted polymer solar cells using TiO2 nanoparticles and analysized by Mott-Schottky capacitance[J]. Org. Electron., 2014, 15(8):1745-1752.
FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photocatalysis[J]. J. Photochem. Photobiol. C, 2000, 1(1):1-21.
MA X X, XIONG Z C, WANG W, et al.. Inverted organic solar cells using a solution-processed TiO2/CdSe electron transport layer to improve performance[J]. J. Phys. D:Appl. Phys., 2016, 49(15):155102-1-7.
MORAIS A, ALVES J P C, LIMA F A S, et al.. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers[J]. J. Photon. Energy, 2015, 5(1):057408-1-21.
秦艺颖, 胡志强, 张普涛, 等. 染料敏化太阳能电池Eu3+, Sm3+掺杂TiO2下转换光阳极的制备及性能[J]. 光子学报, 2016, 45(6):142-148. QIN Y Y, HU Z Q, ZHANG P T, et al.. Synthesis and properties of Eu3+, Sm3+-doped TiO2 down-conversion photoanode for dye-sensitized solar cells[J]. Acta Photon. Sinica, 2016, 45(6):142-148. (in Chinese)
SCHUMANN S, DA CAMPO R, ILLY B, et al.. Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers[J]. J. Mater. Chem., 2011, 21(7):2381-2386.
GEETHU R, KARTHA C S, VIJAYAKUMAR K P. Improving the performance of ITO/ZnO/P3HT:PCBM/Ag solar cells by tuning the surface roughness of sprayed ZnO[J]. Solar Energy, 2015, 120:65-71.
OH S, KANG T, OH S G. Enhanced cell performance by controlling the surface morphology of ZnO buffer layers in organic photovoltaic cells[J]. Solar Energy, 2015, 120:363-369.
LONG Y B. Improving optical performance of inverted organic solar cells by microcavity effect[J]. Appl. Phys. Lett., 2009, 95(19):193301-1-3.
LONG Y B. Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells[J]. Solar Energy Mater. Solar Cells, 2010, 94(5):744-749.
Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI
Preparation and Characterization of TiO2: Tm,Yb Visible Light Responsive Nano-photocatalyst
Photocatalytic Degradation of Indoor Formaldehyde by Er3+:YAlO3/TiO2 Photocatalyst Under Visible Light Irradiation
TiO2 Doped Alq3 as Emitting Layer to Improve The Anti-aging Performance of OLED
Surface and Interface Analysis of ITO/Rubrene Using AFM and XPS
Related Author
Wei-hai SUN
Yu ZOU
Zhao LI
Heng-hui CHEN
Yi-chen LIU
An-ling TONG
Hui-ying YAN
Ruo-wei HE
Related Institution
Engineering Research Center of Environment-friendly Functional Materials, Ministry of Education, Fujian Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, College of Materials Science and Engineering, Huaqiao University
Key Laboratory of The Three Gorges Reservoir Region's Eco-Environment, Chongqing University
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University
Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology
Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology