QU Chun-yang, HUANG Ya-li, ZHANG Yong-ling etc. Polymer Optical Waveguide Amplifier at 655 nm Based on KMnF<sub>3</sub>: Yb<sup>3+</sup>,Er<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2017,38(3): 353-358
QU Chun-yang, HUANG Ya-li, ZHANG Yong-ling etc. Polymer Optical Waveguide Amplifier at 655 nm Based on KMnF<sub>3</sub>: Yb<sup>3+</sup>,Er<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2017,38(3): 353-358 DOI: 10.3788/fgxb20173803.0353.
Polymer Optical Waveguide Amplifier at 655 nm Based on KMnF3: Yb3+,Er3+ Nanocrystals
An optical waveguide amplifier at 655 nm based on KMnF
3
:Yb
3+
Er
3+
nanocrtstals-PMMA covalent-linking nanocomposites pumped by a 980 nm laser diode was demonstrated. The absorption spectrum indicates that the nanocrystals have significant absorption at 980 nm. The fluorescence spectrum was measured under the excitation of 980 nm laser. An optical waveguide amplifier with embedded structure was fabricated using KMnF
3
:Yb
3+
Er
3+
NCs-PMMA nanoparticles as the core layer. A relative gain of 2.7 dB at 655 nm wavelength was obtained when the input signal power was 0.1 mW and pump power was 260 mW in a 1.1 cm-long waveguide.
关键词
Keywords
references
BO S, WANG J, ZHAO H, et al.. LaF3:Er, Yb doped sol-gel polymeric optical waveguide amplifiers[J]. Appl. Phys. B, 2008, 91(1):79-83.
WONG W H, CHAN K S, PUN E Y B, et al.. Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers[J]. Appl. Phys. Lett., 2005, 87(1):011103-1-3.
ENNEN H, SCHNEIDER J, POMRENKE G, et al.. 1.54-m luminescence of erbium-implanted Ⅲ-V semiconductors and silicon[J]. Appl. Phys. Lett., 1983, 43(10):943-946.
ZHOU K J, PAN S M, NGO N Q, et al.. Gain equalization of EDFA using a loop filter with a single polarization controller[J]. Chin. Opt. Lett., 2012, 10(7):070604.
SINGH S, KALER R S. Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system[J]. IEEE Photon. Technol. Lett., 2013, 25(3):250-252.
REDDY A A, BABU S S, PRADEESH K, et al.. Optical properties of highly Er3+-doped sodium-aluminium-phosphate glasses for broadband 1.5m emission[J]. J.Alloys Compd., 2011, 509(9):4047-4052.
FERNANDEZ T T, EATON S M, DELLA V G, et al.. Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass[J]. Opt. Express, 2010, 18(19):20289-20297.
ZHANG D M, CHEN C, SUN X, et al.. Optical properties of Er(DBM)3Phen-doped polymer and fabrication of ridge waveguide[J]. Opt. Commun., 2007, 278(1):90-93.
ZHAI X S, LI J, LIU S S, et al.. Enhancement of 1.53m emission band in NaYF4:Er3+,Yb3+,Ce3+nanocrystals for polymer-based optical waveguide amplifiers[J]. Opt. Mater. Express, 2013, 3(2):270-277.
LO W S, KWOK W M, LAW G L, et al.. Impressive europium red emission induced by two-photon excitation for biological applications[J]. Inorg. Chem., 2011, 50(12):5309-5311.
LAW G L, KWOK W M, WONG W T. Terbium luminescence sensitized through three-photon excitation in a self-assembled unlinked antenna[J]. J.Phys. Chem. B, 2007, 111(37):10858-10861.
KAGAMI M. Optical technologies for car applications innovation of the optical waveguide device fabrication[J]. Opt. Commun. Perspect. Next Gen. Technol., 2007:23-25.
QIN G S, YAMASHITA T, ARAI Y, et al.. 22 dB all-fiber green amplifier using Er3+-doped fluoride fiber[J]. Opt. Commun., 2007, 279(2):298-302.
LI T, LIU T J, CHEN C, et al.. Gain characteristics of LaF3:Er,Yb nanoparticle-doped waveguide amplifier[J]. J.Nanosci. Nanotechnol., 2011, 11(11):9409-9414.
LIANG H, ZHANG Q J, ZHENG Z Q, et al.. Optical amplification of Eu(DBM)3Phen-doped polymer optical fiber[J]. Opt. Lett., 2004, 29(5):477-479.
ZHENG Z Q, MING H, SUN X H, et al.. Study of Eu(DBM)3phen-doped optical polymer waveguides[J]. J. Opt. Soc. Am. B, 2005, 22(4):820-824.
TSANG K C, WONG C Y, PUN E Y B. High-gain optical amplification in Eu3+-doped polymer[J]. Opt. Lett., 2010, 35(4):520-522.
WANG J, WANG F, WANG C, et al.. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(44):10369-10372.
SELL D D, GREENE R L, WHITE R M. Optical exciton-magnon absorption in MnF2[J]. Phys. Rev., 1967, 158(2):489-510.
马春生, 秦政坤, 张大明. 光波导器件设计与模拟[M]. 北京:高等教育出版社, 2012. MA C S, QIN Z K, ZHANG D M. Design and Simulation of Optical Waveguide Devices[M]. Beijing:Higher Education Press, 2012. (in Chinese)
WANG T J, ZHAO D, ZHANG M L, et al.. Optical waveguide amplifiers based on NaYF4:Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposites[J]. Opt. Mater. Express, 2015, 5(3):469-478.
KARVE G, BIHARI B, CHEN R T. Demonstration of optical gain at 1.06m in a neodymium-doped polyimide waveguide[J]. Appl. Phys. Lett., 2000, 77(9):1253-1255.
Research Progress on Upconversion Emission Modulation of Rare Earth Nanocrystals
Effect of Bonding Ratio of Erbium-doped Nanocrystals to Polymers on Gain Properties of Optical Waveguide Amplifier
Research Status and Strategy of Pure Organic Room Temperature Phosphorescent Materials
Prospect and Challenge of Polymers Featuring Aggregation-induced Emission Characteristics
Upconversion Emission and Temperature Sensing of R-LaOF:Er, Yb
Related Author
ZHANG Ge
YANG Xiangfei
WANG Xiaoyong
DONG Hao
SUN Lingdong
YAN Chunhua
TANG Ying
LI Jun
Related Institution
College of Chemistry and Chemical Engineering, Lanzhou University
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
School of Material Science and Engineering, Chongqing University of Technology
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology