WU Chun-hui, ZHU Shi-chao, FU Bing-lei etc. Influence of Carrier Distribution on The Frequency Behavior for GaN-based LEDs[J]. Chinese Journal of Luminescence, 2017,38(3): 347-352
WU Chun-hui, ZHU Shi-chao, FU Bing-lei etc. Influence of Carrier Distribution on The Frequency Behavior for GaN-based LEDs[J]. Chinese Journal of Luminescence, 2017,38(3): 347-352 DOI: 10.3788/fgxb20173803.0347.
Influence of Carrier Distribution on The Frequency Behavior for GaN-based LEDs
The electrical and optical properties of GaN-based high power LEDs were investigated under both DC and AC bias. The results show that the carrier distribution of the active region can be modified by changing the indium concentration of the last quantum barrier. The accumulated electrons in the active region can lead to the negative capacitance effect. The improved carrier transport property for LEDs with lower quantum barrier also helps to increase the recombination rate and modulation bandwidth by 20%. This work will help to understand the influence of carrier distribution on the frequency behavior of GaN-based LEDs.
关键词
Keywords
references
HAAS H, YIN L, WANG Y L, et al.. What is LiFi?[J]. J. Lightwave Technol., 2016, 34(6):1533-1544.
LI H L, CHEN X B, GUO J Q, et al.. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation[J]. IEEE Wireless Commun., 2015, 22(2):68-73.
ZHU S C, YU Z G, ZHAO L X, et al.. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons[J]. Opt. Express, 2015, 23(11):13752-13760.
MINH H L, O'BRIEN D, FAULKNER G, et al.. 100-Mb/s NRZ visible light communications using a postequalized white LED[J]. IEEE Photon. Technol. Lett., 2009, 21(15):1063-1065.
DAVID A, GRUNDMANN M J, KAEDING J F, et al.. Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes[J]. Appl. Phys. Lett., 2008, 92(5):053502-1-3.
LIU Z Q, MA J, YI X Y, et al.. p-InGaN/AlGaN electron blocking layer for InGaN/GaN blue light-emitting diodes[J]. Appl. Phys. Lett., 2012, 101(26):261106-1-4.
CHOI S, KIM H J, KIM S S, et al.. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer[J]. Appl. Phys. Lett., 2010, 96(22):221105-1-3.
FU J J, ZHAO L X, ZHANG N, et al.. Influence of electron distribution on efficiency droop for GaN-based light emitting diodes[J]. J. Solid State Light., 2015, 2(1):5.
WANG T H, KUO Y K. Efficiency enhancement of blue ingan light-emitting diodes with shallow first well[J]. IEEE Photon. Technol. Lett., 2012, 24(22):2084-2086.
RYU H Y, LEE J M. Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers[J]. Appl. Phys. Lett., 2013, 102(18):181115-1-4.
KUO Y K, CHANG J Y, TSAI M C, et al.. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Appl. Phys. Lett., 2009, 95(1):011116-1-3.
VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors[J]. J. Appl. Phys., 2003, 94(6):3675-3696.
LI X, SHI Z, ZHU G Y, et al.. High efficiency membrane light emitting diode fabricated by back wafer thinning technique[J]. Appl. Phys. Lett., 2014, 105(3):031109-1-4.
YANG W, ZHANG S L, MCKENDRY J J D, et al.. Size-dependent capacitance study on InGaN-based micro-light-emitting diodes[J]. J. Appl. Phys., 2014, 116(4):044512-1-6.
FENG L F, LI Y, LI D, et al.. Precise relationship between voltage and frequency at the appearance of negative capacitance in InGaN diodes[J]. Appl. Phys. Lett., 2012, 101(23):233506-1-4.
PINGREE L S C, SCOTT B J, RUSSELL M T, et al.. Negative capacitance in organic light-emitting diodes[J]. Appl. Phys. Lett., 2005, 86(7):073509-1-3.
SHI J W, SHEU J K, WANG C K, et al.. Linear cascade arrays of GaN-based green light-emitting diodes for high-speed and high-power performance[J]. IEEE Photonics Technol. Lett., 2007, 19(18):1368-1370.
LIAO C L, CHANG Y F, HO C L, et al.. High-speed gan-based blue light-emitting diodes with gallium-doped ZnO current spreading layer[J]. IEEE Electron Dev. Lett., 2013, 34(5):611-613.
ZHU S X, WANG J X, YAN J C, et al.. Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes[J]. ECS Solid State Lett., 2014, 3(3):R11-R13.