浏览全部资源
扫码关注微信
1. 南华大学 核设施应急安全作业技术与装备湖南省重点实验室,湖南 衡阳,421001
2. 南华大学 核科学技术学院, 湖南 衡阳 421001
3. 中国核动力研究设计院,四川 成都,610213
Received:22 August 2016,
Revised:29 December 2016,
Published:05 March 2017
移动端阅览
徐守龙, 邹树梁, 黄有骏. γ射线电离辐射对商用CMOS APS性能参数的影响[J]. 发光学报, 2017,38(3): 308-315
XU Shou-long, ZOU Shu-liang, HUANG You-jun. Effect of γ-ray Ionizing Radiation on CMOS Active Pixel Sensor[J]. Chinese Journal of Luminescence, 2017,38(3): 308-315
徐守龙, 邹树梁, 黄有骏. γ射线电离辐射对商用CMOS APS性能参数的影响[J]. 发光学报, 2017,38(3): 308-315 DOI: 10.3788/fgxb20173803.0308.
XU Shou-long, ZOU Shu-liang, HUANG You-jun. Effect of γ-ray Ionizing Radiation on CMOS Active Pixel Sensor[J]. Chinese Journal of Luminescence, 2017,38(3): 308-315 DOI: 10.3788/fgxb20173803.0308.
研究了射线电离辐射效应对商用CMOS有源像素传感器(APS)性能参数的影响,着重分析了量子效率、转换增益、暗电流、坏点和脉冲颗粒噪声等参数。研究结果表明:当受到1 000 Gy辐射后,APS失去工作能力,无信号输出或像素灰度值仅为0,110,255 DN。
60
Co 射线的离位截面约为10
-25
cm
2
(0.1 b)。当剂量率低于58.3 Gy/h且辐照时间较短时,辐射对量子效率及转换增益无影响,坏点产生数为0,总剂量效应使3T-APS的本底噪声升高到4.62 DN但对4T PPD APS几乎无影响。脉冲颗粒噪声引起的各灰度值像素数量分布呈泊松分布,并与剂量率正相关。
The effect of -ray irradiation on the performance parameters of commercial off the shelf CMOS active pixel sensors was studied
specially focusing on the analysis of quantum efficiency
conversion gain
dark current
dead pixels
and pulse parameters such as particle noise pixels. As result shown
the active pixel sensors incapacitated after 1 000 Gy -ray irradiation present as no signal output or pixel gray value of only 0
110 or 255 DN. The displacement cross section of cobalt-60 of -ray is about 10
-25
cm
2
(0.1 b). After short time and low dose rate irradiation below 58.3 Gy/h
the irradiation has less effect on the quantum efficiency and conversion gain
the number of dead pixels is still zero
and the background noise of 3T APS rise up to 4.62 DN but less effect on 4T-APS. The frequency of the gray value of the dark image caused by the pulse noise is in Poisson distribution and correlated with -ray radiation dose rate.
SERVOLI L, TUCCERI P. Use of CMOS imagers to measure high fluxes of charged particles[J]. J. Instrum., 2016, 11(3):P03014-P03014.
WANG Z, MA W, HUANG S, et al.. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors[J]. AIP Adv., 2016, 6(3):035205.
WANG Z, MA Y, LIU J, et al.. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates[J]. Nucl. Instrum. Methods Phys. Res., 2016, 820:89-94.
BAGATIN M, GERARDIN S. Ionizing Radiation Effects in Electronics:From Memories to Imagers[M]. Boca Raton:CRC Press, 2015:265-294.
HE B P, WANG Z J, SHENG J K, et al.. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices[J]. J. Semicond., 2016, 37(12):124003-8
ZHAO Y,LIU L,LIU X, et al.. Radiation effects on scientific CMOS image sensor[J]. J. Semicond., 2015, 36(11):53-57.
DEGERLI Y, GUILLOUX F, ORSINI F. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking[J]. J. Instrum., 2014, 9(5):374-375.
MAGER M. ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade[J]. Nucl. Instrum. Methods Phys. Res., 2016, 824:434-438.
MOREL F, CHEN H G, BERTOLONE G, et al.. Mistral & Astral:two CMOS pixel sensor architectures suited to the lnner tracking system of the alice experiment[J]. J. Instrum., 2014, 9(1):367-375.
LLOPART X, CAMPBELL M, SEGUNDO D S, et al.. Medipix 2, a 64 k pixel read out chip with 55m square elements working in single photon counting mode[J]. Nucl. Sci. Symp. Conf. Record., 2001, 3:1484-1488.
PERI ? I, KREIDL C, FISCHER P. Particle pixel detectors in high-voltage CMOS technology-new achievements[J]. Nucl. Instrum. Methods Phys. Res., 2011, 650(1):158-162.
TURCHETTA R, BERST J D, CASADEI B, et al.. A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology[J]. Nucl. Instrum. Methods Phys. Res., 2001, 458(3):677-689.
ZHANG Y, CHEN H G, HUSSON D, et al.. Design of a Monolithic CMOS sensor for high efficiency neutron counting[J]. Microelectron. J., 2012, 43(11):730-736.
VANSTALLE M, HUSSON D, HIGUERET S, et al.. Demonstrating the -transparency of a CMOS pixel detector for a future neutron dosimeter[J]. Nucl. Instrum. Methods Phys. Res., 2012, 662(1):5.
VANSTALLE M, HUSSON D, HIGUERET S, et al.. Detection of thermal neutrons with a CMOS pixel sensor for a future dosemeter[J]. Nucl. Sci. IEEE Trans., 2012, 59(4):1443-1447.
SERVOLI L, BIAGETTI D, PASSERI D, et al.. Characterization of standard CMOS pixel imagers as ionizing radiation detectors[J]. J. Instrum., 2010, 5(7):1311-1312.
PAOLUCCI M, BATTISTI D, BIASINI M, et al.. A real time active pixel dosimeter for interventional radiology[J]. Radiat. Meas., 2011, 46(11):1271-1276.
CONTI E, PLACIDI P, BIASINI M, et al.. Use of a CMOS image sensor for an active personal dosimeter in interventional radiology[J]. IEEE Trans. Instrum. Meas., 2013, 62(62):1065-1072.
MEROLI S, BIAGETTI D, PASSERI D, et al.. A grazing angle technique to measure the charge collection efficiency for CMOS active pixel sensors[J]. Nucl. Instrum. Methods Phys. Res., 2010, 650(1):230-234.
WHITESON D, MULHEARN M, SHIMMIN C, et al.. Observing ultra-high energy cosmic rays with smartphones[J]. Physics, 2014.
PREZ M, LIPOVETZKY J, HARO M S, et al.. Particle detection and classification using commercial off the shelf CMOS image sensors[J]. Nucl. Instrum. Methods in Phys. Res., 2016, 827:171-180.
NFRDI G, CZIFRUS S, KOCSIS G, et al.. Analysis of dark current images of a CMOS camera during Gamma irradiation[J]. Fusion Eng. Design, 2013, 88(12):3169-3175.
BAGATIN M, GERARDIN S. Ionizing Radiation Effects in Electronics:From Memories to Imagers[M]. Boca Raton:CRC Press, 2015:6-11.
WANG F, LI Y D, GUO Q, et al.. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors[J]. Acta Phys. Sinica, 2016, 65(2):176-181. (in Chinese)
0
Views
35
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution