HU Xian-yun, MENG Tie-hong, ZHANG Ru-guo etc. InP@ZnS QDs/Dured Fluorescent Nanoprobe for The Detection of DNA[J]. Chinese Journal of Luminescence, 2017,38(3): 288-295
HU Xian-yun, MENG Tie-hong, ZHANG Ru-guo etc. InP@ZnS QDs/Dured Fluorescent Nanoprobe for The Detection of DNA[J]. Chinese Journal of Luminescence, 2017,38(3): 288-295 DOI: 10.3788/fgxb20173803.0288.
InP@ZnS QDs/Dured Fluorescent Nanoprobe for The Detection of DNA
The fluorescent nanoprobe for the detection of DNA was established by utilizing mercaptopropionic acid coated InP@ZnS QDs and Dured. In this nanoprobe. The InP@ZnS QDs/Dured fluorescent nanoprobes were structured by electrostatic interactions between environment friendly
negatively charged InP@ZnS quantum dots and positively charged Dured
and then the fluorescence of InP@ZnS QDs/Dured was quenched through fluorescence resonance energy transfer (FRET). At presence of DNA
DNA and Dured were specific binding
which enable Dured removing from the surface of InP@ZnS QDs and achieving fluorescence recovery of InP@ZnS QDs. Thus
the detection of DNA was realized. The linear range of the InP@ZnS QDs/Dured fluorescent nanoprobes for DNA detection and the detection limit were 2.0-275.0 ngL
-1
and 1.0 ngL
-1
respectively. The InP@ZnS QDs/Dured fluorescent nanoprobes can be also used in rapid detection of DNA under simulated physiological conditions.
关键词
Keywords
references
BRUCHEZ Jr M, MORONNE M, GIN P, et al.. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385):2013-2016.
HU X Y, ZHU K, GUO Q S, et al.. Ligand displacement-induced fluorescence switch of quantum dots for ultrasensitive detection of cadmium ions[J]. Anal. Chim. Acta, 2014, 812:191-198.
CLAPP A R, MEDINTZ I L, MAURO J M, et al.. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J. Am. Chem. Soc., 2004, 126(1):301-310.
王国庆, 陈兆鹏, 陈令新. 基于核酸适配体和纳米粒子的光学探针[J]. 化学进展, 2010, 22(2-3):489-499. WANG G Q, CHEN Z P, CHEN L X. Aptamer-nanoparticle-based optical probes[J]. Prog. Chem., 2010, 22(2-3):489-499. (in Chinese)
BIJU V, ITOH T, ISHIKAWA M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging[J]. Chem. Soc. Rev., 2010, 39(8):3031-3056.
ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
PENG X G, MANNA L, YANG W D, et al.. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404(6773):59-61.
BURDA C, CHEN X B, NARAYANAN R, et al.. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005, 105(4):1025-1102.
PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. J. Am. Chem. Soc., 2001, 123(1):183-184.
LI L, QIAN H F, REN J C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature[J]. Chem. Commun., 2005(4):528-530.
邹函君, 曹渊, 徐彦芹, 等. 荧光量子点及其在生物检测中的应用[J]. 化学通报, 2012, 75(3):209-215. ZOU H J, CAO Y, XU Y Q, et al.. Fluorescent quantum dots and their application in biological detection[J]. Chemistry, 2012, 75(3):209-215. (in Chinese)
MA Q, SU X G. Near-infrared quantum dots:synthesis, functionalization and analytical applications[J]. Analyst, 2010, 135(8):1867-1877.
BHARALI D J, LUCEY D W, JAYAKUMAR H, et al.. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy[J]. J. Am. Chem. Soc., 2005, 127(32):11364-11371.
YONG K T, DING H, ROY I, et al.. Imaging pancreatic cancer using bioconjugated InP quantum dots[J]. ACS Nano, 2009, 3(3):502-510.
BRUNETTI V, CHIBLI H, FIAMMENGO R, et al.. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots:in vitro and in vivo toxicity assessment[J]. Nanoscale, 2013, 5(1):307-317.
刘军, 罗国安, 王义明, 等. 小分子与核酸相互作用的研究进展[J]. 药学学报, 2001, 36(1):74-78. LIU J, LUO G A, WANG Y M, et al.. Research development of the interaction of small molecules with nucleic acids[J]. Acta Pharm. Sinica, 2001, 36(1):74-78. (in Chinese)
王兴明, 黎泓波, 胡亚敏, 等. 苏木素与DNA相互作用的光谱研究[J]. 化学学报, 2007, 65(2):140-146. WANG X M, LI H B, HU Y M, et al.. Study on the interaction between hematoxylin and DNA by spectrometry[J]. Acta Chim. Sinica, 2007, 65(2):140-146. (in Chinese)
俞英, 吴霖, 谭丽贤. 碱性品红荧光法测定脱氧核糖核酸及其机理的研究[J]. 分析化学, 2004, 32(5):628-632. YU Y, WU L, TAN L X. Fluorimetric determination of deoxyribonucleic acid with rosaniline as the probe and its reaction mechanism[J]. Chin. J. Anal. Chem., 2004, 32(5):628-632. (in Chinese)
RILEY J, JENNER D, SMITH J C, et al.. Rapid determination of DNA concentration in multiple samples[J]. Nucleic Acids Res., 1989, 17(20):8383.
HE S J, SONG B, LI D, et al.. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Adv. Funct. Mater., 2010, 20(3):453-459.
ZHU K, HU X Y, GE Q Y, et al.. Fluorescent recognition of deoxyribonucleic acids by a quantum dot/meso-tetrakis(N-methylpyridinium-4-yl)porphyrin complex based on a photo induced electron-transfer mechanism[J]. Anal. Chim. Acta, 2014, 812:199-205.
ZHANG L, ZHU K, DING T, et al.. Quantum dot-phenanthroline dyads:detection of double-stranded DNA using a photoinduced hole transfer mechanism[J]. Analyst, 2013, 138(3):887-893.
司芳瑞, 苗艳明, 杨茂青, 等. 基于MPA包覆的Mn掺杂ZnS量子点/米托蒽醌复合体系对DNA的检测[J]. 发光学报, 2016, 37(1):13-21. SI F R, MIAO Y M, YANG M Q, et al.. Detection of DNA based on manganese-doped ZnS quantum dots/MTX composite system[J]. Chin. J. Lumin., 2016, 37(1):13-21. (in Chinese)
龚会平, 刘绍璞, 殷鹏飞, 等. 荧光可逆调控研究CdTe量子点-吖啶橙-小牛胸腺DNA的相互作用及分析应用[J]. 化学学报, 2011, 69(23):2843-2850. GONG H P, LIU S P, YIN P F, et al.. Study on the interaction between CdTe quantum dot-acridine orange-calf thymus DNA by fluorescence reversible control[J]. Acta Chim. Sinica, 2011, 69(23):2843-2850. (in Chinese)
徐靖, 赵应声, 王洪梅, 等. 应用水相合成的CdTePCdS核壳型量子点荧光探针测定DNA[J]. 分析试验室, 2006, 25(4):50-53. XU J, ZHAO Y S, WANG H M, et al.. Application of CdTePCdS core-shell quantum dots synthesized in an aqueous solution as fluorescence probe in the determination of nucleic acids[J]. Chin. J. Anal. Lab., 2006, 25(4):50-53. (in Chinese)
LIU Y H, TSAI Y Y, CHIEN H J, et al.. Quantum-dot-embedded silica nanotubes as nanoprobes for simple and sensitive DNA detection[J]. Nanotechnology, 2011, 22(15):155102-1-7.
时姗姗, 章如松, 马恒辉, 等. 介绍一种新型的核酸染料DuRed[J]. 诊断病理学杂志, 2015, 22(2):122. SHI S S, ZHANG R S, MA H H, et al.. DuRed-A novel nucleic acid dye[J]. J. Diag. Pathol., 2015, 22(2):122. (in Chinese)
HUANG Q, BAUM L, FU W L. Simple and practical staining of DNA with GelRed in agarose gel electrophoresis[J]. Clin. Lab., 2010, 56(3-4):149-152.
XIE R, BATTAGLIA D, PENG X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared[J]. J. Am. Chem. Soc., 2007, 129(50):15432-15433.
Advances in Integration of Organic Small Molecule Fluorescent Probes with Electrospinning Techniques for Detection of Explosives
Construction and Application of Zn2+ Fluorescent Probe Based on Coumarin
Fluorescent Probe Derived from 2-(2'-Hydroxyphenyl)-Benzothiazole for Hydrogen Peroxide Sensing: Synthesis, Characterization and Application
Construction and Bioimaging of PPi Fluorescent Probes Based on Iron Complexes
Construction and Properties of Colorimetric Zn2+ Fluorescent Probe Based on Naphthofuran
Related Author
CHENG Leqin
TAO Yunqi
ZHANG Yuewei
YU Xue
WANG Ye
ZHU Xinyue
HUAI Yu
CUI Tong
Related Institution
School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology
College of Chemical Engineering, University of Science and Technology Liaoning
Anan Cosmetics and Healthcare Products Co., Ltd.
College of Light Chemical Engineering, Guangdong Polytechnic Normal University
State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University