浏览全部资源
扫码关注微信
1. 华南师范大学信息光电子科技学院 广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
2. 中国科学院 无机功能材料与器件重点实验室, 上海 200050
3. 华南师范大学 实验中心, 广东 广州 510006
Received:08 September 2016,
Revised:12 October 2016,
Published:05 March 2017
移动端阅览
王飞, 周志勇, 曾群等. Eu<sup>3+</sup>掺杂5Li<sub>2</sub>O-1Nb<sub>2</sub>O<sub>5</sub>-5TiO<sub>2</sub>发光陶瓷的制备及性能研究[J]. 发光学报, 2017,38(3): 269-273
WANG Fei, ZHOU Zhi-yong, ZENG Qun etc. Preparation and Properties of Eu-doped 5Li<sub>2</sub>O-1Nb<sub>2</sub>O<sub>5</sub>-5TiO<sub>2</sub> Ceramics[J]. Chinese Journal of Luminescence, 2017,38(3): 269-273
王飞, 周志勇, 曾群等. Eu<sup>3+</sup>掺杂5Li<sub>2</sub>O-1Nb<sub>2</sub>O<sub>5</sub>-5TiO<sub>2</sub>发光陶瓷的制备及性能研究[J]. 发光学报, 2017,38(3): 269-273 DOI: 10.3788/fgxb20173803.0269.
WANG Fei, ZHOU Zhi-yong, ZENG Qun etc. Preparation and Properties of Eu-doped 5Li<sub>2</sub>O-1Nb<sub>2</sub>O<sub>5</sub>-5TiO<sub>2</sub> Ceramics[J]. Chinese Journal of Luminescence, 2017,38(3): 269-273 DOI: 10.3788/fgxb20173803.0269.
以Li
2
CO
3
、Nb
2
O
5
、TiO
2
和Eu
2
O
3
为原料,采用固相法制备Eu
3+
掺杂的5Li
2
CO
3
-1Nb
2
O
5
-5TiO
2
(LNT)发光介质陶瓷。通过密度、XRD和荧光光谱测试,对0.2%(质量分数)Eu
2
O
3
掺杂的陶瓷片进行性能表征。结果表明:1 120℃烧结致密的陶瓷片,其晶相结构为M-相与Li
2
TiO
3
两相复合构成;在400 nm的近紫外光激发下,样品有较强的橙光(592 nm)和红光(615 nm)发射,分别属于Eu
3+
的
5
D
0
7
F
1
的磁偶极跃迁和
5
D
0
7
F
2
的电偶极跃迁。
Eu-doped 5Li
2
O-1Nb
2
O
5
-5TiO
2
(LNT) luminescent dielectric ceramics were synthesized by solid state reaction method with Li
2
CO
3
Nb
2
O
5
TiO
2
and Eu
2
O
3
as raw materials. The properties of LNT:0.2%Eu
3+
(mass fraction)ceramics were characterized by density test
X-ray diffraction(XRD) and photoluminescence spectroscopy
respectively. The XRD results show that the ceramics sintered at 1 120℃ consist of M-phase and Li
2
TiO
3
solid solution
no other miscellaneous phase. Under 400 nm excitation
strong red-orange luminescence can be observed. The red emission at 615 nm belonging to
5
D
0
7
F
2
transition is an electric dipole transition
while the orange emission at 592 nm corresponding to
5
D
0
7
F
1
transition is a typical magnetic dipole allowed transition.
杨邦朝, 胡永达. LTCC技术的现状和发展[J]. 电子元件与材料, 2014, 33(11):5-9. YANG B C, HU Y D. Overview on LTCC technology and its development[J]. Electron. Compon. Mater., 2014, 33(11):5-9. (in Chinese)
DOU G, ZHOU D X, GUO M, et al.. Low-temperature sintered Zn2SiO4-CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency[J]. J. Alloys Compd., 2012, 513:466-473.
CHEN Y B. Dielectric properties and crystal structure of (Mg0.9Zn0.05Co0.05)4(Nb1-xTax)2O9 ceramics[J]. J. Alloys Compd., 2012, 541:283-287.
LI X Y, ZHOU J. Characterization of luminescent LTCC composite materials for white LED package[J]. Adv. Mater. Res., 2014, 873:761-769.
付作岭, 董晓睿, 盛天琦, 等. 纳米晶体中稀土离子的发光性质及其变化机理研究[J]. 中国光学, 2015, 8(1):139-146. FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J]. Chin. Opt., 2015, 8(1):139-146. (in Chinese)
洪广言. 稀土发光材料的研究进展[J]. 人工晶体学报, 2015, 44(10):2641-2651. HONG G Y. Research progress of rare earth luminescent materials[J]. J. Synth. Cryst., 2015, 44(10):2641-2651. (in Chinese)
VILLAFUERTE-CASTREJN M E, ARAGN-PIA A, VALENZUELA R, et al.. Compound and solid-solution formation in the system LiM2O-Nb2O5-TiO2[J]. J. Solid State Chem., 1987, 71(1):103-108.
BORISEVICH A, DAVIES P K. Microwave dielectric properties of Li1+x-M1-x-3yTix+4yO3 (M=Nb5+, Ta5+) solid solutions[J]. J. Eur. Ceram. Soc., 2001, 21(10-11):1719-1722.
BORISEVICH A Y, DAVIES P K. Crystalline structure and dielectric properties of Li1+x-yNb1-x-3yTix+4yO3 M-phase solid solutions[J]. J. Am. Ceram. Soc., 2002, 85(3):573-578.
ZENG Q, LI W, SHI J L, et al.. A new microwave dielectric ceramic for LTCC applications[J]. J. Am. Ceram. Soc., 2006, 89(5):1733-1735.
ZENG Q, LI W, SHI J L, et al.. Fabrication and microwave dielectric properties of a new LTCC ceramic composite based on Li2O-Nb2O5-TiO2 system[J]. Mater. Lett., 2006, 60(27):3203-3206.
ZENG Q, LI W, SHI J L, et al.. A new Li2O-Nb2O5-TiO2 microwave dielectric ceramic composite[J]. Phys. Stat. Sol. (a), 2006, 203(11):R91-R93.
ZENG Q, LI W, SHI J L, et al.. Effect of B2O3 addition to the LNT ceramic composite on sintering behavior and microwave dielectric properties[J]. Phys. Stat. Sol. (a), 2007, 204(10):3533-3537.
ZENG Q, LI W, SHI J L, et al.. Influence of V2O5 additions to 5Li2O-1Nb2O5-5TiO2 ceramics on sintering temperature and microwave dielectric properties[J]. J. Am. Ceram. Soc., 2007, 90(7):2262-2265.
ZENG Q, ZHANG N N, ZHOU Y H, et al.. Effects of ZnO and B2O3 on the microstructure and microwave dielectric properties of 5Li2O-1Nb2O5-5TiO2 ceramics[J]. Int. J. Appl. Ceram. Technol., 2014, 11(1):200-206.
KANG D H, NAM K C, CHA H J. Effect of Li2O-V2O5 on the low temperature sintering and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics[J]. J. Eur. Ceram. Soc., 2006, 26(10-11):2117-2121.
ZHOU H F, WANG H, LI K C, et al.. Effect of B2O3 and CuO additions on the sintering temperature and microwave dielectric properties of 3Li2O-Nb2O5-3TiO2 ceramics[J]. J. Mater. Sci. Mater. Electron., 2009, 20(3):283-288.
HAYASHI H, NAKANO H, JONES M I. Microstructure and luminescence of Eu-doped Li1+x-yNb1-x-3yTix+4yO3 solid solutions with superstructure[J]. J. Ceram. Soc. Jpn., 2010, 118(1375):226-230.
HAYASHI H, NAKANO H, JONES M I. Microstructure and luminescence of rare earth doped Li (Nb, Ti)O3 solid solutions[J]. J. Mater. Sci. Eng., 2011, 18(8):082018-1-4.
NAKANO H, OZONO K, HAYASHI H, et al.. Synthesis and luminescent properties of a new Eu3+-doped Li1+x (Ta1-z-Nbz)1-xTixO3 red phosphor[J]. J. Am. Ceram. Soc., 2012, 95(9):2795-2797.
NAKANO H, OZONO K, SAJI T, et al.. Rapid synthesis of Eu3+-doped LNT (Li-Nb-Ti-O) phosphor by millimeter-wave heating[J]. Opt. Mater., 2013, 35(11):2045-2048.
MOHAPATRA M, NAIK Y P, NATARAJAN V, et al.. Rare earth doped lithium titanate (Li2TiO3) for potential phosphor applications[J]. J. Lumin., 2010, 130(12):2402-2406.
朱海玲, 陈沙鸥, 李达, 等. 测定陶瓷材料密度及其气孔率的方法[J]. 理化检验-物理分册, 2006, 42(6):289-291. ZHU H L, CHEN S O, LI D, et al.. Measuring method for the density and the pore ratio of ceramic materials[J]. PTCA (Part A:Phys. Test.), 2006, 42(6):289-291. (in Chinese).
NAKANO H, FURUYA S, FUKUDA K, et al.. Synthesis and luminescence enhancement of Eu3+, Sm3+, co-doped Li1.11Ta0.89Ti0.11O3 phosphor[J]. Mater. Res. Bull., 2014, 60:766-770.
BLASSE G. Some considerations on rare-earth activated phosphors[J]. J. Lumin., 1970, 1-2:766-777.
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3):750-761.
OFELT G S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys., 1962, 37(3):511-520.
REISFELD R, GREENBERG E, BROWN R N, et al.. Fluorescence of europium(Ⅲ) in a flouride glass containing zirconium[J]. Chem. Phys. Lett., 1983, 95(2):91-94.
OLLIER N, PANCZER G, CHAMPAGNON B, et al.. Europium as a luminescent probe of an aluminoborosilicate nuclear glass and its weathering gels[J]. J. Lumin., 2001, 94-95:197-201.
MOHAPATRA M, NAIK Y P, NATARAJAN V, et al.. Photoluminescence properties of Eu3+ in lithium titanate[J]. Phys. Rev. B:Condens. Matter., 2011, 406(10):1977-1982.
0
Views
56
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution