浏览全部资源
扫码关注微信
1. 深圳大学 电子科学与技术学院, 广东省微纳光机电工程技术重点实验室, 光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
2. 吉林大学 电子科学与工程学院, 集成光电子学国家重点联合实验室吉林大学实验区, 吉林省光通信用聚合物波导器件工程实验室, 吉林 长春 130012
Received:04 August 2016,
Revised:02 September 2016,
Published:05 February 2017
移动端阅览
李彤, 张美玲, 王菲等. 掺铒聚合物狭缝波导放大器的增益特性研究[J]. 发光学报, 2017,38(2): 213-219
LI Tong, ZHANG Mei-ling, WANG Fei etc. Simulation of Gain Properties for Slot Waveguide Amplifiers Based on Erbium-doped Polymers[J]. Chinese Journal of Luminescence, 2017,38(2): 213-219
李彤, 张美玲, 王菲等. 掺铒聚合物狭缝波导放大器的增益特性研究[J]. 发光学报, 2017,38(2): 213-219 DOI: 10.3788/fgxb20173802.0213.
LI Tong, ZHANG Mei-ling, WANG Fei etc. Simulation of Gain Properties for Slot Waveguide Amplifiers Based on Erbium-doped Polymers[J]. Chinese Journal of Luminescence, 2017,38(2): 213-219 DOI: 10.3788/fgxb20173802.0213.
设计了一种高浓度稀土铒掺杂聚合物填充硅狭缝结构的平面光波导放大器(工作波长1 550 nm,泵浦波长1 480 nm),能够在低泵浦下获得高增益,可以应用于硅基光互联的损耗补偿。通过扫描电镜照片观察发现,合成的铒掺杂聚合物材料具有良好的纳米狭缝填充能力。考虑铒离子的合作上转换和激发态吸收,利用铒离子四能级跃迁模型,建立原子速率方程和光功率传输方程,数值仿真分析了聚合物光学性质、狭缝波导结构参数及信号光泵浦光功率等放大器增益特性的影响因素。这种具有纳米截面尺寸的光波导放大器,获得4.5 dB的信号光相对增益仅需要1.5 mW的泵浦光,展现了良好的集成光学应用前景。为了进一步提高增益,引入了多层狭缝结构,四层狭缝波导的重叠积分因子比一层狭缝的高42%。
A slot waveguide amplifier based on high concentration erbium-doped polymers
working at 1 550 nm wavelength under 1 480 nm pumping
is presented to realize high optical gains with low pump powers for the loss compensation in the silicon-based optical interconnection. The influence factors of the gain properties
such as the optical properties of the polymers
the structure sizes of the slot waveguides
and the signal and pump powers
are numerically simulated. This structure
with the nanometer scale
only needs a 1.5 mW pump to obtain a 4.5 dB gain
which exhibits promising applications in integrated optical systems. Further
multiple-layer slot structures are introduced to get higher gains
and the over-lapping integral factor of the four-layer slot waveguides is 42% larger than that of the one-layer waveguides.
CHEN R, TRAN T T D, NG K W, et al.. Nanolasers grown on silicon[J]. Nat. Photon., 2011, 5(3):170-175.
ZHANG L, YANG M, JIANG Y T, et al.. Architectures and routing schemes for optical network-on-chips[J]. Comput. Electr. Eng., 2009, 35(6):856-877.
CHEN G Q, CHEN H, HAURYLAU M, et al.. Predictions of CMOS compatible on-chip optical interconnect[J]. Integration VLSI J., 2007, 40(4):434-446.
YAN Z X, LI C H, LUO Y, et al.. Silver hierarchical structures grown on microstructured silicon in chip for microfluidic integrated catalyst and SERS detector[J]. Chin. Opt. Lett., 2015, 13(10):102401-1-5.
TANG L, KOCABAS S E, LATIF S, et al.. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nat. Photon., 2008, 2(4):226-229.
RONG H S, XU S B, KUO Y H, et al.. Low-threshold continuous-wave Raman silicon laser[J]. Nat. Photon., 2007, 1(4):232-237.
LIU A S, LIAO L, RUBIN D, et al.. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Opt. Express, 2007, 15(2):660-668.
SINGH A. Influence of carrier transport on Raman amplification in silicon waveguides[J]. Opt. Express, 2010, 18(12):12569-12580.
SIH V, XU S B, KUO Y H, et al.. Raman amplification of 40 Gb/s data in low-loss silicon waveguides[J]. Opt. Express, 2007, 15(2):357-362.
CAI Z Z, YU H Y, ZHANG Y C, et al.. Synthesis and characterization of novel fluorinated polycarbonate negative-type photoresist for optical waveguide[J]. Polymer, 2015, 61:140-146.
WAN Y, ZHANG Y, SHI Z S, et al.. Direct UV-written highly fluorinated aromatic-aliphatic copolyethers for optical waveguides[J]. Polymer, 2012, 53(4):967-975.
MANN V, ASHOK N, RASTOGI V. Coupled strip-slot waveguide design for dispersion compensation[J]. Opt. Quant. Electron., 2015, 47(9):3161-3169.
CHENG N C, MA Y F, FU P H, et al.. Horizontal slot waveguides for polarization branching control[J]. Appl. Opt., 2015, 54(3):436-443.
YIN H Z, LIU Y M, YU Z Y, et al.. Nonlinear hybrid plasmonic slot waveguide for second-harmonic generation[J]. Chin. Opt. Lett., 2013, 11(10):101901-1-5.
ALMEIDA V R, XU Q F, BARRIOS C A, et al.. Guiding and confining light in void nanostructure[J]. Opt. Lett., 2004, 29(11):1209-1211.
TORRISI G, MASCALI D, SORBELLO G, et al.. Full-wave FEM simulations of electromagnetic waves in strongly magnetized non-homogeneous plasma[J]. J. Electromagnet. Wave Appl., 2014, 28(9):1085-1099.
LEI K L, CHOW C F, TSANG K C, et al.. Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers[J]. J. Mater. Chem., 2010, 20(35):7526-7529.
LIU X Y, CHEN X, ZHAI X S, et al.. NaYF4 nanocrystals with intense 1530 nm fluorescence for polymer optical waveguide amplifiers[J]. J. Nanosci. Nanotechnol., 2014, 14(5):3499-3502.
CHEN C, ZHANG D, LI T, et al.. Erbium-ytterbium codoped waveguide amplifier fabricated with solution-processable complex[J]. Appl. Phys. Lett., 2009, 94(4):041119-1-3.
PINTUS P, FARALLI S, DI PASQUALE F. Integrated 2.8m laser source in Al2O3:Er3+ slot waveguide on SOI[J]. J. Lightwave Technol., 2011, 29(8):1206-1212.
BROWN E E, HMMERICH U, BLUIETT A, et al.. Near-infrared and upconversion luminescence in Er:Y2O3 ceramics under 1.5m excitation[J]. J. Am. Ceram. Soc., 2014, 97(7):2105-2110.
LI T, LIU T, CHEN C, et al.. Gain characteristics of LaF3:Er, Yb nanoparticle-doped waveguide amplifier[J]. J. Nanosci. Nanotechno., 2011, 11(11):9409-9414.
PINTUS P, FARALLI S, DI PASQUALE F. Low-threshold pump power and high integration in Al2O3:Er3+ slot waveguide lasers on SOI[J]. IEEE Photon. Technol. Lett., 2010, 22(19):1428-1430.
CHEN K X, CHU P L, CHIANG K S, et al.. Design and fabrication of a three-dimensional polymer optical waveguide polarization splitter[J]. Opt. Commun., 2005, 250(4-6):297-301.
0
Views
129
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution