浏览全部资源
扫码关注微信
1. 北京交通大学 发光与光信息教育部重点实验室, 北京 100044
2. 苏州瑞晟太阳能有限公司, 江苏 苏州 215123
Received:28 August 2016,
Revised:09 October 2016,
Published:05 February 2017
移动端阅览
张振, 钱磊, 韩长峰等. 基于PVP和PbSe三维自组装超晶格复合体系的电双稳器件[J]. 发光学报, 2017,38(2): 207-212
ZHANG Zhen, QIAN Lei, HAN Chang-feng etc. Electrical Bistable Devices Based on Composites of Polyvinyl Pyrrolidone and Three Dimensional Self-assembled Lead Selenide Superlattices[J]. Chinese Journal of Luminescence, 2017,38(2): 207-212
张振, 钱磊, 韩长峰等. 基于PVP和PbSe三维自组装超晶格复合体系的电双稳器件[J]. 发光学报, 2017,38(2): 207-212 DOI: 10.3788/fgxb20173802.0207.
ZHANG Zhen, QIAN Lei, HAN Chang-feng etc. Electrical Bistable Devices Based on Composites of Polyvinyl Pyrrolidone and Three Dimensional Self-assembled Lead Selenide Superlattices[J]. Chinese Journal of Luminescence, 2017,38(2): 207-212 DOI: 10.3788/fgxb20173802.0207.
采用旋涂工艺将PbSe三维自组装超晶格镶嵌在两层聚合物PVP中,制备了基于PVP和PbSe三维自组装超晶格复合体系的电双稳器件,器件结构为ITO/PVP/PbSe三维自组装超晶格/PVP/Al,研究了其电学性能和记忆效应。与参比器件ITO/PVP/Al相比,器件ITO/PVP/PbSe三维自组装超晶格/PVP/Al的电流-电压特性呈现出非常明显的电双稳特性和非易失记忆行为,在相同的电压下同时具有两种不同的导电状态:低电导的关态和高电导的开态。当PVP与PbSe超晶格的质量比为1:1时,器件性能最好,其最大电流开关比为710
4
,经过10
4
s仍几乎无衰减。通过对电流-电压曲线拟合,利用不同的导电模型对器件的载流子传输机制进行了解释。结果表明,PbSe三维自组装超晶格作为电荷陷阱,可以俘获、储存及释放电荷,对器件的电双稳性能能起决定性作用。
Electrical bistable devices utilizing three dimensional self-assembled lead selenide (PbSe) superlattices embedded between two polyvinyl pyrrolidone (PVP) layers were fabricated by using spin-coating technique. Each PbSe superlattice is a cluster with a uniform size of 50-60 nm
which consists of hundreds of PbSe nanoparticles with an average size of 5 nm. The current-voltage characteristics for the devices with an architecture of indium-tin-oxide (ITO)/PVP/PbSe superlattices/PVP/Al exhibit electrical bistabilities and memory behaviors due to the trapping
storring
and detrapping of the PbSe superlattices. The maximum ON/OFF ratio of the current bistability for the optimal device is 710
4
and it is maintained for 110
4
s with little degradation. The electrical bistable properties and the carrier transport mechanisms of the devices are interpreted by the conduction models based on the results of fitting the current-voltage curves.
MA L P, LIU J, YANG Y. Organic electrical bistable devices and rewritable memory cells[J]. Appl. Phys. Lett., 2002, 80(16):2997-2999.
OUYANG J Y, CHU C W, SZMANDA C R, et al.. Programmable polymer thin film and non-volatile memory device[J]. Nat. Mater., 2004, 3(12):918-922.
TSENG R J, OUYANG J Y, CHU C W, et al.. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device[J]. Appl. Phys. Lett., 2006, 88(12):123506-1-3.
PRAKASH A, OUYANG J M, LIN J L, et al.. Polymer memory device based on conjugated polymer and gold nanoparticles[J]. J. Appl. Phys., 2006, 100(5):054309-1-5.
BOZANO L D, KEAN B W, DELINE V R, et al.. Mechanism for bistability in organic memory elements[J]. Appl. Phys. Lett., 2004, 84(4):607-609.
TSENG R J, HUANG J X, OUYANG J Y, et al.. Polyaniline nanofiber/gold nanoparticle nonvolatile memory[J]. Nano Lett., 2005, 5(6):1077-1080.
SON D I, YOU C H, JUNG J H, et al.. Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites[J]. Appl. Phys. Lett., 2010, 97(1):013304.
SON D I, PARK D H, CHOI W K, et al.. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nanotechnology, 2009, 20(19):195203.
SLEIMAN A, MABROOK M F, NEJM R R, et al.. Organic bistable devices utilizing carbon nanotubes embedded in poly(methyl methacrylate)[J]. J. Appl. Phys., 2012, 112(2):024509.
SON D I, KIM T W, SHIM J H, et al.. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nano Lett., 2010, 10(7):2441-2447.
LI F S, SON D I, HAM J H, et al.. Memory effect of nonvolatile bistable devices based on CdSe/ZnS nanoparticles sandwiched between C60 layers[J]. Appl. Phys. Lett., 2007, 91(16):162109.
CHENG Y Y, HAN C F, CHEN L, et al.. Electrical bistability and conduction mechanisms of zinc oxide/polyvinylpyrrolidone nanocomposites bistable devices[J]. Sci. Adv. Mater., 2016, 8(4):783-787.
TANG A W, TENG F, QIAN L, et al.. Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer[J]. Appl. Phys. Lett., 2009, 95(14):143115-1-3.
TANG A W, QU S C, HOU Y B, et al.. Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites[J]. J. Appl. Phys., 2010, 108(9):094320-1-5.
MA L P, PYO S, OUYANG J Y, et al.. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system[J]. Appl. Phys. Lett., 2003, 82(9):1419-1421.
LI F S, SON D I, KIM B J, et al.. Nonvolatile electrical bistability and operating mechanism of memory devices based on CdSe/ZnS nanoparticle/polymer hybrid composites[J]. Appl. Phys. Lett., 2008, 93(2):021913-1-3.
TANG A W, TENG F, HOU Y B, et al.. Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol[J]. Appl. Phys. Lett., 2010, 96(16):163112-1-3.
LI F S, KIM T W, DONG W G, et al.. Formation and electrical bistability properties of ZnO nanoparticles embedded in polyimide nanocomposites sandwiched between two C60 layers[J]. Appl. Phys. Lett., 2008, 92(1):011906-1-3.
JUNG J H, KIM J H, KIM T W, et al.. Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer[J]. Appl. Phys. Lett., 2006, 89(12):122110-1-3.
LI F S, SON D I, SEO S M, et al.. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer[J]. Appl. Phys. Lett., 2007, 91(12):122111-1-3.
QIAN L, YANG Y X, HAN C F, et al.. Efficient infrared photodetector based on three-dimensional self-assembled PbSe superlattices[J]. J. Mater. Chem. C, 2014, 2(33):6738-6742.
0
Views
97
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution