浏览全部资源
扫码关注微信
1. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地, 信息材料与纳米技术研究院, 江苏 南京 210023
2. 南京邮电大学 江苏国家先进材料协同创新中心, 江苏 南京 210023
3. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室, 吉林 长春 130022
Received:07 July 2016,
Revised:07 November 2016,
Published:05 February 2017
移动端阅览
方达, 张智强, 吴震轩等. 光谱稳定的互补色双发光层高效混合白光OLED[J]. 发光学报, 2017,38(2): 201-206
FANG Da, ZHANG Zhi-qiang, WU Zhen-xuan etc. High Efficiency Hybrid White Organic Light-emitting Diodes with Stable Emission Spectrum Based on Two Separately Monochromatic Emission Layers[J]. Chinese Journal of Luminescence, 2017,38(2): 201-206
方达, 张智强, 吴震轩等. 光谱稳定的互补色双发光层高效混合白光OLED[J]. 发光学报, 2017,38(2): 201-206 DOI: 10.3788/fgxb20173802.0201.
FANG Da, ZHANG Zhi-qiang, WU Zhen-xuan etc. High Efficiency Hybrid White Organic Light-emitting Diodes with Stable Emission Spectrum Based on Two Separately Monochromatic Emission Layers[J]. Chinese Journal of Luminescence, 2017,38(2): 201-206 DOI: 10.3788/fgxb20173802.0201.
利用两种颜色的发光层制备了光谱稳定的高效混合WOLED。其中蓝光发光层用14%质量分数的BNE掺杂在BePP
2
中,橙光发光层用1%质量分数的Ir(bt)
2
(acac)掺杂在49.5%质量分数的NPB和49.5%质量分数的BePP
2
组成的混合主体中。在不利用任何光耦合技术的条件下,器件在亮度为100 cd/m
2
时,功率效率可以达到39 lm/W;当亮度提高到1 000 cd/m
2
时,效率仅发生轻微滚降至27.5 lm/W。器件的光谱稳定,亮度在1 000 cd/m
2
和10 000 cd/m
2
时,CIE坐标分别为(0.37,0.48)和(0.37,0.47)。良好的光谱稳定性归结于设计的双极性中间层平衡了其两侧激子的产生。
Highly efficient hybrid white organic light-emitting diode (WOLED) with stable emission spectrum was fabricated by using two separately monochromatic emission layers (EML). The blue emissive layer was based on 14%(mass fraction) trans-1
2-bis(6-(N
N-di-p-tolylamino)-Naphthalene-2-yl)ethene (BNE) doped in BePP
2
and the orange emissive layer was based on 1%(mass fraction) Ir(bt)
2
(acac) doped in a mixed-host of 49.5%(mass fraction) NPB and 49.5%(mass fraction) BePP
2
. Without the use of any outcoupling techniques
this device can achieve a power efficiency of 39 lm/W at brightness of 100 cd/m
2
and slightly rolls off to 27.5 lm/W at brightness of 1 000 cd/m
2
. There is nearly no color shift with the bias voltages as the Commission Internationale de L'Eclairage (CIE) coordinates are (0.37
0.48) and (0.37
0.47) at 1 000 cd/m
2
and 10 000 cd/m
2
respectively. The stable emission spectrum can be contributed to the well designed ambipolar interlayer which successfully balances the exciton generation evenly on its both sides.
KIDO J, HONGAWA K, OKUTAMA K, et al.. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Appl. Phys. Lett., 1994, 64(7):815-817.
D'ANDRADE B W, FORREST S R. White organic light-emitting devices for solid-state lighting[J]. Adv. Mater., 2004, 16(18):1585-1595.
PARK Y S, LEE S, KIM K H, et al.. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency[J]. Adv. Funct. Mater., 2013, 23(29):4914-4920.
SO F, KIDO J, BURROWS P. Organic light-emitting devices for solid-state lighting[J]. MRS Bull., 2008, 33(7):663-669.
D'ANDRADE B W, HOLMES R J, FORREST S R. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer[J]. Adv. Mater., 2004, 16(7):624-628.
D'ANDRADE B W. Lighting:white phosphorescent LEDs offer efficient answer[J]. Nat. Photon., 2007, 1(1):33-34.
LAAMNSKY S, DJUROVICH P, MURPHY D, et al.. Highly phosphorescent bis-cyclometalated iridium complexes:synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001, 123(18):4304-4312.
COCCHI M, VIRGILI D, FATTORI V, et al.. NCN-coordinated platinum(Ⅱ) complexes as phosphorescent emitters in high-performance organic light-emitting devices[J]. Adv. Funct. Mater., 2007, 17(2):285-289.
HO C L, WONG W Y, ZHOU G J, et al.. Solution-processible multi-component cyclometalated iridium phosphors for high-efficiency orange-emitting OLEDs and their potential use as white light sources[J]. Adv. Funct. Mater., 2007, 17(15):2925-2936.
HUANG W S, LIN J T, CHIEN C H, et al.. Highly phosphorescent bis-cyclometalated iridium complexes containing benzoimidazole-based ligands[J]. Chem. Mater., 2004, 16(12):2480-2488.
REINEKE S, BALDO M A. Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs[J]. Phys. Stat. Sol.(a), 2012, 209(12):2341-2353.
SU S J, GONMORI E, HISAHIRO S, et al.. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off[J]. Adv. Mater., 2008, 20(21):4189-4194.
SUN Y R, FORREST S R. Multiple exciton generation regions in phosphorescent white organic light emitting devices[J]. Org. Electron., 2008, 9(6):994-1001.
KING S M, AL-ATTAR H A, EVANS R J, et al.. The use of substituted iridium complexes in doped polymer electrophosphorescent devices:the influence of triplet transfer and other factors on enhancing device performance[J]. Adv. Funct. Mater., 2006, 16(8):1043-1050.
HO M H, CHEN T M, YEH P C, et al.. Highly efficient p-i-n white organic light emitting devices with tandem structure[J]. Appl. Phys. Lett., 2007, 91(23):233507.
CHOULIS S A, CHOONG V E, PATWARDHAN A, et al.. Interface modification to improve hole-injection properties in organic electronic devices[J]. Adv. Funct. Mater., 2006, 16(8):1075-1080.
ADACHI C, BALDO M A, FORREST S R, et al.. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials[J]. Appl. Phys. Lett., 2000, 77(6):904-906.
KAWAMURA Y, GOUSHI K, BROOKS J, et al.. 100% phosphorescence quantum efficiency of ir(Ⅲ) complexes in organic semiconductor films[J]. Appl. Phys. Lett., 2005, 86(7):071104-1-3.
SASABE H, TAKAMATSU J I, MOTOYAMA T, et al.. High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex[J]. Adv. Mater., 2010, 22(44):5003-5007.
SU S J, SASABE H, TAKEDA T, et al.. Pyridine-containing bipolar host materials for highly efficient blue phosphorescent OLEDs[J]. Chem. Mater., 2008, 20(5):1691-1693.
KEPLER R G, CARIS J C, AVAKIAN P, et al.. Triplet excitons and delayed fluorescence in anthracene crystals[J]. Phys. Rev. Lett., 1963, 10(9):400-402.
HE G F, PFEIFFER M, LEO K, et al.. High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers[J]. Appl. Phys. Lett., 2004, 85(17):3911-3913.
WATANABE S, IDE N, KIDO J. High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers[J]. Jpn. J. Appl. Phys., 2007, 46(3A):1186-1188.
CHEN Y H, ZHAO F C, ZHAO F B, et al.. Ultra-simple hybrid white organic light-emitting diodes with high efficiency and CRI trade-off:fabrication and emission-mechanism analysis[J]. Org. Electron., 2012, 13(12):2807-2815.
WANG Q, HOB C L, ZHAO Y B, et al.. Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs:the influence of triplet transfer and charge-transport behavior on enhancing device performance[J]. Org. Electron., 2010, 11(2):238-246.
ZHAO F C, ZHANG Z Q, LIU Y P, et al.. A hybrid white organic light-emitting diode with stable color and reduced efficiency roll-off by using a bipolar charge carrier switch[J]. Org. Electron., 2012, 13(6):1049-1055.
GUO L Y, ZHANG X L, ZHUO M J, et al.. Non-interlayer and color stable WOLEDs with mixed host and incorporating a new orange phosphorescent iridium complex[J]. Org. Electron., 2014, 15(11):2964-2970.
SUN Y R, GIEBINK N C, KANNO H, et al.. Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature, 2006, 440(7086):908-912.
SUN N, WANG Q, ZHAO Y B, et al.. A hybrid white organic light-emitting diode with above 20% external quantum efficiency and extremely low efficiency roll-off[J]. J. Mater. Chem. C, 2014, 2(36):7494-7504.
ZHAO J, YU J S, LIU S Q, et al.. Combined host-guest doping and host-free systems for high-efficiency white organic light-emitting devices[J]. J. Lumin., 2012, 132(8):1994-1998.
LIU B Q, XU M, WANG L, et al.. Very-high color rendering index hybrid white organic light-emitting diodes with double emitting nanolayers[J]. Nano-Micro Lett., 2014, 6(4):335-339.
YE J, CHEN ZH, AN F F, et al.. Achieving highly efficient simple-emission layer fluorescence/phosphorescence hybrid white organic light-emitting devices via effective confinement of triplets[J]. ACS Appl. Mater. Interf., 2014, 6(12):8964-8970.
ZHU L P, CHEN J S, MA D G. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes[J]. J. Appl. Phys., 2015, 118(17):175503.
XUE K W, HAN G G, DUAN Y, et al.. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]. Org. Electron., 2015, 18:84-88.
0
Views
85
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution