Impact of The Modification of Dielectric Layers on The Morphlogy and Device Performance of Inkjet-printed OFET
|更新时间:2020-08-12
|
Impact of The Modification of Dielectric Layers on The Morphlogy and Device Performance of Inkjet-printed OFET
Chinese Journal of LuminescenceVol. 38, Issue 2, Pages: 194-200(2017)
作者机构:
1. 福州大学 平板显示技术国家地方联合工程实验室, 福建 福州 350102
2. 福建工程学院 信息科学与工程学院, 福建 福州 350108
作者简介:
基金信息:
Supported by National Key Research and Development Program of China(2016YFB0401103);National Natural Science Foundation of China(51503039);Natural Science Foundation of Fujian Province(2016J01749);Young Teacher Education Research Project of Fujian Province (JA15350)
ZHANG Guo-cheng, CHEN Hui-peng, GUO Tai-liang. Impact of The Modification of Dielectric Layers on The Morphlogy and Device Performance of Inkjet-printed OFET[J]. Chinese Journal of Luminescence, 2017,38(2): 194-200
ZHANG Guo-cheng, CHEN Hui-peng, GUO Tai-liang. Impact of The Modification of Dielectric Layers on The Morphlogy and Device Performance of Inkjet-printed OFET[J]. Chinese Journal of Luminescence, 2017,38(2): 194-200 DOI: 10.3788/fgxb20173802.0194.
Impact of The Modification of Dielectric Layers on The Morphlogy and Device Performance of Inkjet-printed OFET
表面分别采用十八烷基三氯硅烷(OTS)处理和原子层沉积薄层氧化铝的修饰方式,制备了喷墨打印有机薄膜晶体管并研究了修饰前后绝缘层的表面形貌、接触角及有源层的物相结构。虽然绝缘层的表面形貌在修饰前后变化不大,但是表面接触角和打印后有源层的物相结构有较大差别。OTS处理和沉积氧化铝修饰后,器件的迁移率比修饰前分别增大了4倍和9倍,而开关比则分别增大了1个和4个数量级。修饰后的最大迁移率可达0.35 cm
2
/(Vs),开关比可达6.010
6
。
Abstract
OTFT devices were fabricated through inkjet printing active layer on SiO
2
dielectric. To improve the device performance
SiO
2
layer was modified with octadecyltrichlorosilane (OTS) or a thin layer of Al
2
O
3
(1 nm) by atomic layer deposition. The surface morphology
contact angle of PDVT-8 solution on the dielectric layer
and the crystalline of the inkjet printing active layers were examined. The surface morphology of the modified dielectric layer is slightly various with SiO
2
layer
while the contact angle and crystalline of the inkjet printing active layer change significantly. For OTS-treated dielectric layer and ALD Al
2
O
3
-treated dielectric layer
the mobility increases 4 times and 9 times
while the on/off current ratio increases 1 order of magnitude and 4 orders of magnitude
respectively
The maximum value of mobility and the on/off current ratio are 0.35 cm
2
/(Vs) and 6.010
6
.
关键词
Keywords
references
SHAIK B, HAN J H, SONG D J, et al.. Synthesis of donor-acceptor copolymer using benzoselenadiazole as acceptor for OTFT[J]. RSC Adv., 2016, 6(5):4070-4076.
谢应涛, 欧阳世宏, 王东平, 等. 聚合物薄膜晶体管制备条件对其性能影响分析[J]. 液晶与显示, 2015, 30(3):427-431. XIE Y T, OUYANG S H, WANG D P, et al.. Influence of fabrication process on performance of polymeric thin-film transistor[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(3):427-431. (in Chinese)
FARAJI S, HASHIMOTO T, TURNER M L, et al.. Solution-processed nanocomposite dielectrics for low voltage operated OFETs[J]. Org. Electron., 2015, 17:178-183.
林广庆, 李鹏, 熊贤风, 等. 不同表面修饰制备高性能柔性薄膜晶体管[J]. 发光学报, 2013, 34(10):1392-1399. LIN G Q, LI P, XIONG X F, et al.. Preparation of high-performance flexible organic thin-film transistor through different dielectric surface modification[J]. Chin. J. Lumin., 2013, 34(10):1392-1399. (in Chinese)
ROBERTSON J. High dielectric constant oxides[J]. Eur. Phys. J. Appl. Phys., 2004, 28(3):265-291.
LIU A, LIU G X, ZHU H H, et al.. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric[J]. Appl. Phys. Lett., 2016, 108(23):233506.
HE W Q, XU W C, PENG Q, et al.. Surface modification on solution processable ZrO2 high-k dielectrics for low voltage operations of organic thin film transistors[J]. J. Phys. Chem. C, 2016, 120(18):9949-9957.
ALESHIN A N, SHCHERBAKOV I P, KOMOLOV A S, et al.. Poly(9-vinylcarbazole)-graphene oxide composite field-effect transistors with enhanced mobility[J]. Org. Electron., 2015, 16:186-194.
CHOE Y S, YI M H, KIM J H, et al.. Crosslinked polymer-mixture gate insulator for high-performance organic thin-film transistors[J]. Org. Electron., 2016, 36:171-176.
SUBBARAO N V V, MURALI G, SURESH V, et al.. Effect of thickness of bilayer dielectric on 1,7-dibromo-N,N'-dioctadecyl-3,4,9,10-perylenetetracarboxylic diimide based organic field-effect transistors[J]. Phys. Stat. Sol.(a), 2014, 211(10):2403-2411.
WU Y L, LIU P, ONG B S, et al.. Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors[J]. Appl. Phys. Lett., 2005, 86(14):142102-1-3.
KOBAYASHI S, NISHIKAWA T, TAKENOBU T, et al.. Control of carrier density by self-assembled monolayers in organic field-effect transistors[J]. Nat. Mater., 2004, 3(5):317-322.
LIU C, XU Y, NOH Y Y. Contact engineering in organic field-effect transistors[J]. Mater. Today, 2015, 18(2):79-96.
ZSCHIESCHANG U, ANTE F, SCHLRHOLZ M, et al.. Mixed self-assembled monolayer gate dielectrics for continuous threshold voltage control in organic transistors and circuits[J]. Adv. Mater., 2010, 22(40):4489-4493.
MARTINEZ HARDIGREE J F, DAWIDCZYK T J, IRELAND R M, et al.. Reducing leakage currents in n-channel organic field-effect transistors using molecular dipole monolayers on nanoscale oxides[J]. Appl. Mater. Interf., 2013, 5(15):7025-7032.
SUEMORI K, UEMURA S, YOSHIDA M, et al.. Threshold voltage stability of organic field-effect transistors for various chemical species in the insulator surface[J]. Appl. Phys. Lett., 2007, 91(19):192112-1-3.
ITO Y, VIRKAR A A, MANNSFELD S, et al.. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors[J]. J. Am. Chem. Soc., 2009, 131(26):9396-9404.
YE X, LIN H, YU X E, et al.. High performance low-voltage organic field-effect transistors enabled by solution processed alumina and polymer bilayer dielectrics[J]. Synth. Met., 2015, 209:337-342.
HUANG G M, DUAN L, DONG G F, et al.. High-mobility solution-processed tin oxide thin-film transistors with high- alumina dielectric working in enhancement mode[J]. ACS Appl. Mater. Interf., 2014, 6(23):20786-20794.
NAYAK P K, HEDHILI M N, CHA D, et al. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric[J]. Appl. Phys. Lett., 2013, 103(3):033518-1-4.
IATSUNSKYI I, KEMPIиSKI M, JANCELEWICZ M, et al.. Structural and XPS characterization of ALD Al2O3 coated porous silicon[J]. Vacuum, 2015, 113:52-58.
DING X W, ZHANG J H, SHI W M, et al.. Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors[J]. Mater. Sci. Semicond. Process., 2015, 29:326-330.
PARK J H, KIM K, YOO Y B, et al.. Water adsorption effects of nitrate ion coordinated Al2O3 dielectric for high performance metal-oxide thin-film transistor[J]. J. Mater. Chem. C, 2013, 1(43):7166-7174.
LIU A, LIU G X, ZHU H H, et al.. Fully solution-processed low-voltage aqueous In2O3 thin-film transistors using an ultrathin ZrOx dielectric[J]. ACS Appl. Mater. Interf., 2014, 6(20):17364-17369.
Directional Growth of Organic Semiconductor Film on Asymmetric Structures
Preparation and Characterization of Inkjet-printed Small-molecule Organic Semiconductor Thin Films Based on A Surface Modification Layer of Poly(4-vinylphenol)
Surface Modification of Thermoplastic Polyurethane Substrate and Its Application in Flexible OLEDs
Inkjet Printed Perovskite Quantum Dot Light-emitting Diodes Based on Multifunctional Phenethylammonium Bromide Modification Layer
Applications of Carbon Dots in Advanced Sodium Ion Batteries
Related Author
WANG Xiang-hua
GU Xun
ZHANG Chun-yu
LI Bo
LYU Shen-chen
XIONG Xian-feng
YUAN Miao
LIN Guang-qing
Related Institution
Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology