Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission
|更新时间:2020-08-12
|
Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission
Chinese Journal of LuminescenceVol. 38, Issue 2, Pages: 188-193(2017)
作者机构:
1. 上海大学 新型显示技术及应用集成教育部重点实验室, 上海 200072
2. 北华航天工业学院, 河北 廊坊 065000
作者简介:
基金信息:
Supported by National Natural Scientific Foundation of China(61604093);Natural Science Foundation of Shanghai (16ZR1411000);Shanghai Pujiang Program (16PJ1403300);Shanghai University Young Teacher Training Program of Shanghai Municipality (ZZSD15049)
PAN Sai-hu, SI Chang-feng, GUO Kun-ping etc. Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission[J]. Chinese Journal of Luminescence, 2017,38(2): 188-193
PAN Sai-hu, SI Chang-feng, GUO Kun-ping etc. Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission[J]. Chinese Journal of Luminescence, 2017,38(2): 188-193 DOI: 10.3788/fgxb20173802.0188.
Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission
基于有机发光二极管的电致发光原理,建立了载流子注入延迟时间和发光延迟时间模型,探索了延迟时间的影响因素,发现发光延迟时间与器件有效面积、器件厚度、外加电压等密切相关。通过制备不同面积的OLED器件,发现器件面积越小,发光延迟时间越短。以高速信号激励不同面积的OLEDs器件,面积为0.01 mm
2
的器件能够实现1 000 Mbit/s的信号传输速率,且能量利用率达到47.7%。
Abstract
Based on the principle of organic electroluminescence (EL)
models of carrier injection delay time and EL the delay time were developed. The results show that the EL delay time is significantly related to the light-emitting area
the thickness of organic layer and the applied voltage. By preparing organic LED devices with different areas
it is found that the light emission delay time is shorter when the device area is smaller. Furthermore
excited by high-speed signals
the OLED device with an area of 0.01 mm
2
is effective under the excitation with a frequency of 1 000 Mbit/s
leading to an energy utilization rate of 47.7%.
关键词
Keywords
references
WANG Z, HELANDER G, QIU J, et al.. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nat. Photon., 2011, 5(12):753-757.
丁磊, 张方辉, 李艳飞, 等. 高饱和度蓝色磷光有机发光器件[J]. 光电子激光, 2011, 22(11):1615-1620. DING L, ZHANG F H, LI Y F, et al.. High saturated blue phosphorscent organic lighting emitting devices[J]. J. Optoelectron.Laser, 2011, 22(11):1615-1620. (in Chinese)
OHMORI Y. Development of organic light-emitting diodes for electro-optical integrated devices[J]. Laser. Photon. Rev., 2010, 4(2):300-310.
FUKUDA T, TANIGUCHI Y. Fast response organic light-emitting diode for visible optical communication[J]. SPIE, 2008, 6899:68990K-1-13.
GUO K, ZHANG J, XU T, et al.. High-efficiency near ultraviolet and blue organic light-emitting diodes using star-shaped material as emissive and hosting molecules[J]. J. Disp. Technol., 2014, 10(8):642-646.
CHO Y J, YOOK K S, LEE J Y, et al.. A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs[J]. Adv. Mater., 2014, 26:4050-4055.
CHUNG Y H, SHENG L, XING X, et al.. A pure blue emitter (CIE y0.08) of chrysene derivative with high thermal stability for OLED[J]. J. Mater. Chem. C, 2015, 3:1794-1798.
吴清洋, 谢国华, 张振松, 等. 基于连续性掺杂的高效全荧光白色有机电致发光器件的研究[J]. 物理学报, 2013, 62(19):197204 WU Q Y, XIE G H, ZHANG Z S, et al.. Highly efficient all fiuorescent white organic light-emitting devices made by sequential doping[J]. Acta Phys. Sinica, 2013, 62(19):197204. (in Chinese)
FUKUDA T, OKADA T, WEI B, et al.. Influence of carrier-injection efficiency on modulation rate of organic light source[J]. Opt. Lett., 2007, 32(13):1905-1907.
ICHIKAWA M, AMAGAI J, HORIBA Y, et al.. Dynamic turn-on behavior of organic light-emitting devices with different work function cathode metals under fast pulse excitation[J]. J. Appl. Phys., 2003, 94:7796.
ICHIKAWA M, HORIBA Y, NAKATANI H, et al.. Method of measuring charge carrier mobility in organic light-emitting diodes using fast transient electroluminescence responses[J]. Jpn. J. Appl. Phys., 2002, 41:2252.
FUKUDA T, OKADA T, WEI B, et al.. Transient property of optically pumped organic film of different fluorescence lifetimes[J]. Appl. Phys. Lett., 2007, 90(23):231105.
WEI B, FURUKAWA K, ICHIKAWA M, et al.. Energy transfer and charge trapping in dye-doped organic light-emitting diodes[J]. Mol. Cryst. Liq. Cryst., 2005, 426(1):295-302.
WEI B, FURUKAWA K, AMAGAI J, et al.. A dynamic model for injection and transport of charge carriers in pulsed organic light-emitting diodes[J]. Semicond. Sci. Tech., 2004, 19:56-59.
林宏, 周朋超, 王菲菲, 等. 用于光通信的高速响应有机电致发光器件[J]. 发光学报, 2013, 34(1):73-77. LIN H, ZHOU P C, WANG F F, et al.. Fast-response organic light-emitting devices for optical communication[J]. Chin. J. Lumin., 2013, 34(1):73-77. (in Chinese).
王俊西, 李宏建, 熊志勇, 等. LiF修饰阴极的双层有机电致发光器件的延时效应[J]. 发光学报, 2010, 31(1):17-24. WANG J X, LI H J, XIONG Z Y, et al.. Study on electroluminescent delay time in bilayer organic light-emitting diodes with LiF/Ag cathode[J]. Chin. J. Lumin., 2010, 31(1):17-24. (in Chinese)
关晓亮, 梁续旭, 武明珠, 等. 面向短距离有机光纤通信系统的红光OLED的研究[J]. 电子设计工程, 2015(21):173-176. GUAN X L, LIANG X X, WU M Z, et al.. Study on red OLED for optical communication of local-area network[J]. Electron. Design Eng., 2015(21):173-176. (in Chinese)
WONG T C, KOVAC J, LEE C S, et al.. Transient electroluminescence measurements on electron-mobility of N-arylbenzimidazoles[J]. Chem. Phys. Lett.,2001, 334(1):61-64.
ARKHIPOV V I, EMELIANOVA E V, TAK Y H, et al.. Charge injection into light-emitting diodes theory and experiment[J]. J. Appl. Phys., 1998, 84(8):848-856.
於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率[J]. 物理学报, 2012, 61(8):087204. YU H Z. Measurement of the hole mobility in the blend system by space charge limited current[J]. Acta Phys. Sinica,2012, 61(8):087204. (in Chinese)
NGUYEN P H, SCHEINERT S, BERLEB S, et al.. The influence of deep traps on transient current-voltage characteristics of organic light-emitting diodes[J]. Org. Electron., 2001, 2:105-120.
王平, 孙久勋, 杨凯. 有机二极管基于通用迁移率模型的解析电流电压关系[J]. 原子与分子物理学报, 2011, 4(4):755-759. WANG P, SUN J X, YANG K. Analytic current-voltage relationship based on the unified mobility model for organic diodes[J]. J. Atom. Mol. Phys., 2011, 4(4):755-759. (in Chinese)