JIANG Xiao-wei, WU Hua,. Research of 1D Sub-wavelength Grating Anti-reflection[J]. Chinese Journal of Luminescence, 2017,38(2): 177-181 DOI: 10.3788/fgxb20173802.0177.
Research of 1D Sub-wavelength Grating Anti-reflection
High transmission sub-wavelength gratings placed in the micro-electro-mechanical system(MEMS) wavelength tunable vertical cavity surface emitting laser (VCSEL) inner cavity can improve the wavelength tuning range. In order to make the wavelength tuning range of the tunable VCSEL be largest
the transmittance of the anti-reflection sub-wavelength must be the maximum. By using rigorous coupled wave analysis (RCWA)
the effects of the sub-wavelength parameters (
e.g
.
duty cycle
period
thickness) and angle of incidence on the transmission were analyzed
and the optimum parameters and angle of incidence were gotten. Either TE or TM polarization has the optimum duty cycle to make its transmittance get 99.5%. The duty cycles of TE and TM polarization are 0.23 and 0.8 under the conditions of this paper. The effect of the grating thickness on the transmittance is periodic variation. The period of TE and TM polarization are 150 nm and 300 nm
respectively. For fixed grating parameters
the transmittance can be maximum only when the incidence angle of the light source is 0
no matter TE or TM polarization. From equivalent medium theory (EMT)
it is found that the grating period has no influence on the grating transmittance. At last
the transmittance was calculated when the grating thickness and duty cycle changed together
and the optimum grating parameters were gotten.
关键词
Keywords
references
李硕, 关宝璐, 史国柱, 等. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究[J]. 物理学报, 2012, 16(18):184208-1-6. LI S, GUAN B L, SHI G Z, et al.. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings[J]. Acta Phys. Sinica, 2012, 16(18):184208-1-6. (in Chinese)
李秀山, 宁永强, 张星, 等. Si/SiO2高对比光栅参数对反射率的影响[J]. 发光学报, 2015, 36(7):806-810. LI X S, NING Y Q, ZHANG X, et al.. Influence of grating parameters on reflectivity of Si/SiO2 high contrast gratings[J]. Chin. J. Lumin., 2015, 36(7):806-810. (in Chinese)
CHANG-HASNAIN C J, YANG W J. High-contrast gratings for integrated optoelectronics[J]. Adv. Opt. Photon., 2012, 4(3):379-440.
ANSBAEK T, CHUNG I S, SEMENOVA E S, et al.. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL[J]. IEEE Photon. Technol. Lett., 2013, 25(4):365-357.
HUANG M C Y, ZHOU Y, CHANG-HASNAIN C J. A nanoelectromechanical tunable laser[J]. Nat. Photon., 2008, 2(3):180-184.
SELVARAJA S K, VERMEULEN D, SCHAEKERS M, et al.. Highly efficient grating coupler between optical fiber and silicon photonic circuit[C]. Proceedings of The 2009 Conference on Quantum electronics and Laser Science Conference on Lasers and Electro-Optics, Baltimore, Maryland, US, 2009:CTuC6.
MEKIS A, GLOECKNER S, MASINI G, et al.. A grating-coupler-enabled CMOS photonics platform[J]. IEEE J. Sel. Top. Quant. Electron., 2011, 17(3):597-608.
BOGAERTS W, TAILLAERT D, DUMON P, et al.. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires[J]. Opt. Express, 2007, 15(4):1567-1578.
DAVANI H A, KGEL B, DEBERNARDI P, et al.. Polarization investigation of a tunable high-speed short-wavelength bulk-micromachined MEMS-VCSEL[J]. SPIE, 2012, 8276:82760T-1-8.
HAGGANS C W, LI L F, KOSTUK R K. Effective-medium theory of zeroth-order lamellar gratings in conical mountings[J]. J. Opt. Soc. Am. A, 1993, 10(10):2217-2225.
MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of grating diffraction-E-mode polarization and losses[J]. J. Opt. Soc. Am., 1983, 73(4):451-455.