浏览全部资源
扫码关注微信
1. 四川师范大学 化学与材料科学学院, 四川 成都 610068
2. 成都石室中学 北湖校区, 四川 成都 610059
Received:23 August 2016,
Revised:07 October 2016,
Published:05 February 2017
移动端阅览
高一骁, 蒋永乐, 毕剑等. 原电池法室温制备Ba<sub>1-<em>x</em></sub>Ca<sub><em>x</em></sub>MoO<sub>4</sub>固溶体薄膜[J]. 发光学报, 2017,38(2): 147-153
GAO Yi-xiao, JIANG Yong-le, BI Jian etc. Room Temperature Preparation of Ba<sub>1-<em>x</em></sub>Ca<sub><em>x</em></sub>MoO<sub>4</sub> Solid Solution Thin Films by Galvanic Cell Method[J]. Chinese Journal of Luminescence, 2017,38(2): 147-153
高一骁, 蒋永乐, 毕剑等. 原电池法室温制备Ba<sub>1-<em>x</em></sub>Ca<sub><em>x</em></sub>MoO<sub>4</sub>固溶体薄膜[J]. 发光学报, 2017,38(2): 147-153 DOI: 10.3788/fgxb20173802.0147.
GAO Yi-xiao, JIANG Yong-le, BI Jian etc. Room Temperature Preparation of Ba<sub>1-<em>x</em></sub>Ca<sub><em>x</em></sub>MoO<sub>4</sub> Solid Solution Thin Films by Galvanic Cell Method[J]. Chinese Journal of Luminescence, 2017,38(2): 147-153 DOI: 10.3788/fgxb20173802.0147.
在含Ca
2+
和Ba
2+
的碱性溶液中,通过原电池法在室温条件下制备了Ba
1-
x
Ca
x
MoO
4
多晶固溶体薄膜。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和荧光分析(FA)对所制备的薄膜进行了分析表征,研究了Ba摩尔分数对薄膜的晶相结构、表面形貌和发光性能的影响。结果表明,原电池法制备的Ba
1-
x
Ca
x
MoO
4
薄膜致密、均匀、结晶完好,为四方相结构。随着初始溶液中Ba含量的增加,所得Ba
1-
x
-Ca
x
MoO
4
固溶体薄膜的形貌逐渐从CaMoO
4
微晶的球形转变为BaMoO
4
微晶的四方锥形。在290 nm紫外光的激发下,制备的薄膜均在350 nm和495 nm附近呈现两个宽的发射带,其中495 nm的蓝光发射明显强于350 nm的紫光发射。初始溶液中的Ba/Ca的量比对所制备的Ba
1-
x
Ca
x
MoO
4
固溶体薄膜的发射光谱的形状和发射波长影响甚微,但对其发射强度有明显影响。
Ba
1-
x
Ca
x
MoO
4
polycrystalline solid solution films were prepared in the alkaline solution containing Ca and Ba ions
via
galvanic cell method at room temperature. The as-prepared films were characterized through X-ray diffraction (XRD)
scanning electron microscopy (SEM)
X-ray photoelectronic spectroscopy (XPS) and fluorescence analysis (FA)
respectively. The influences of Ba mole fraction on the crystal structure
morphology and luminescence property were investigated. The experiment results show that the prepared Ba
1-
x
Ca
x
MoO
4
films are uniform
dense and well-crystallized
having a tetragonal structure. The surface morphology of the obtained Ba
1-
x
Ca
x
MoO
4
solid solution films gradually transform from that of CaMoO
4
to that of BaMoO
4
with the increase of Ba content in the initial solution. Excited by 290 nm ultraviolet ray at room temperature
all the as-prepared Ba
1-
x
Ca
x
MoO
4
films show two broad emission bands centered at 350 nm and 495 nm
respectively
and the emission intensity of the band located 495 nm is obvious greater than that of the band located at 350 nm. The molar ratio of Ba/Ca has little influence on the shape and wavelength for the emission bands of the obtained Ba
1-
x
Ca
x
MoO
4
films
whereas it has markedly influence on their emission intensity.
MINOWA M, ITAKURA K, MORIYAMA S, et al.. Measurement of the property of cooled lead molybdate as a scintillator[J]. Nucl. Instrum. Meth. Phys. Res. Sect. A, 1992, 320(3):500-503.
JENA P, CUPTA S K, NATARAJAN V, et al.. Structural characterization and photoluminescence properties of sol-gel derived nanocrystalline BaMoO4:Dy3+[J]. J. Lumin., 2015, 158:203-210.
LI L, ZHOU X J, WEI X T, et al.. Enhanced near-infrared quantum cutting in CaMoO4:Yb3+ phosphors induced by doping with Li+ ions for improving solar cells efficiency[J]. Mater. Chem. Phys., 2014, 147(3):860-866.
YIN Y K, LI Y, ZHANG H F, et al.. One-step fabrication of BaMoO4 microstructures with controlled morphologies via a simple EDTA-mediated route[J]. Superlatt. Microstruct., 2013, 55:109-117.
DABRE K V, DHOBLE S J, LOCHAB J. Synthesis and luminescence properties of Ce3+ doped MWO4 (M=Ca, Sr and Ba) microcrystalline phosphors[J]. J. Lumin., 2014, 149:348-352.
GHAED-AMINI M, BAZARGANIPOUR M, SALAVATI-NIASARI M. Calcium molybdate octahedral nanostructures, hierarchical self-assemblies controllable synthesis by coprecipitation method:characterization and optical properties[J]. J. Ind. Eng. Chem., 2015, 21:1089-1097.
ZHANG L, DAI J S, LIAN L, et al.. Dumbbell-like BaWO4 microstructures:surefacant-free hydrothermal synthesis, growth mechanism and photoluminescence property[J]. Superlatt. Microstruct., 2013, 54:87-95.
CAVALCANTE L S, SCZANCOSKI J C, BATISTA N C, et al.. Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution[J]. Adv. Powder Technol., 2013, 24(1):344-353.
YANG L L, WANG Y G, WANG Y J, et al.. Shape-controlled CaWO4 microcrystals by self-assembly of nanocrystals via a simple sonochemical method[J]. Adv. Powder Technol., 2013, 24(3):721-726.
CHO W S, YOSHIMURA M. Preparation of highly crystallized BaMoO4 film using a solution reaction assisted by electrochemical dissolution of molybdenum[J]. Solid State Ionics, 1997, 100(1-2):143-147.
CHEN L P, GAO Y H, LIU X L. Influences of KMnO4 on the syntheses and properties of CaWO4 thin films prepared by galvanic cell methods[J]. Mater. Chem. Phys., 2014, 146(3):363-368.
BI J, XIAO D Q, GAO D J, et al.. BaMoO4 thin films prepared by electrochemical method at room temperature[J]. Cryst. Res. Technol., 2003, 38(11):935-940.
CHEN L P, GAO Y H. Electro-deposition of luminescent molybdate and tungstate thin films via a cell route[J]. Mater. Chem. Phys., 2009, 116(1):242-246.
高道江. 钼酸盐、钨酸盐和钛酸盐薄膜的软溶液工艺(SSP)制备技术及性能研究[D]. 成都:四川大学, 2003. GAO D J. Research on The Preparation and Properties of Molybdate, Tungstate and Titanate Thin Films by Soft Solution Processing Technique[D]. Chengdu:Sichuan University, 2003. (in Chinese)
ORHAN E, ANICETE-SANTOS M, MAURERA M A M A, et al.. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films:the role of disorder[J]. Chem. Phys., 2005, 312(1-3):1-9.
PONTES F M, GALHIANE M S, SANTOS L S, et al.. Polymeric precursor method to the synthesis of XWO4 (X=Ca and Sr) thin films-structural, microstructural and spectroscopic investigations[J]. J. Alloys Compd., 2009, 477(1-2):608-615.
PONTES F M, MAURERA M A M A, SOUZA A G, et al.. Preparation, structural and optical characterization of BaWO4 and PbWO4 thin films prepared by a chemical route[J]. J. Eur. Ceram. Soc., 2003, 23(16):3001-3007.
WANG R, LIU C, ZENG J, et al.. Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition[J]. J. Solid State Chem., 2009, 182(4):677-684.
RANGAPPA D, FUJIWARA T, WATANABE T, et al.. Preparation of Ba1-xSrxWO4 and Ba1-xCaxWO4 films on tungsten plate by mechanically assisted solution reaction at room temperature[J]. Mater. Chem. Phys., 2008, 109(2-3):217-223.
ZHAI R, WANG H, YAN H, et al.. Preparation of crystalline CaWO4 thin films by chemical bath deposition[J]. J. Cryst. Growth, 2006, 289(2):647-651.
RANGAPPA D, FUJIWARA T, WATANABE T, et al.. Fabrication of AMoO4 (A=Ba, Sr) film on Mo substrate by solution reaction assisted ball-rotation[J]. Mater. Res. Bull., 2008, 43(11):3155-3163.
MAURERA M A M A, SOUZA A G, SOLEDADE L E B, et al.. Microstructural and optical characterization of CaWO4 and SrWO4 thin films prepared by a chemical solution method[J]. Mater. Lett., 2004, 58(5):727-732.
YOSHIDA T, ZHANG J B, KOMATSU D, et al.. Electrodeposition of inorganic/organic hybrid thin films[J]. Adv. Funct. Mater., 2009, 19(1):17-43.
YU P, BI J, GAO D J, et al.. Study of polycrystalline Ba1-xCaxMoO4 films prepared by electrochemical technique[J]. J. Electroceram., 2008, 21(1):184-188.
毕剑, 赖欣, 张姝, 等. Sr1-xCaxMoO4固溶体薄膜的室温电化学制备及表征[J]. 材料保护, 2007, 40(6):37-39. BI J, LAI X, ZHANG S, et al.. Preparation of Sr1-xCaxMoO4 solid solution thin films at room temperature via electrochemical route and characterization of the films[J]. J. Mater. Prot., 2007, 40(6):37-39. (in Chinese)
KRTIL P, NISHIMURA S, YOSHIMURA M. Electrochemical formation of ternary oxide films-an EQCM approach to galvanostatic deposition of alkali earth metal tungstates and molybdates[J]. Electrochim. Acta, 1999, 44(21-22):3911-3920.
XIA C T, FUENZALIDA V M. Room temperature electrochemical growth of polycrystalline BaMoO4 films[J]. J. Eur. Ceram. Soc., 2003, 23(3):519-525.
CHEN L P, GAO Y H, ZHU J L. Luminescent properties of BaWO4 films prepared by cell electrochemical technique[J]. Mater. Lett., 2008, 62(19):3434-3436.
CHEN L P, GAO Y H. Fabrication of luminescent SrWO4 thin films by a novel electrochemical method[J]. Mater. Res. Bull., 2007, 42(10):1823-1830.
CHEN L P, GAO Y H. Mechanisms and applications of cell electrochemical technique to prepare luminescent SrMoO4 thin films[J]. Chem. Eng. J., 2007, 131(1-3):181-185.
BI J, CUI C H, LAI X, et al.. Synthesis of luminescent SrMoO4 thin films by a non-reversible galvanic cell method[J]. Mater. Res. Bull., 2008, 43(3):743-747.
GAO D J, LAI X, CUI C H, et al.. Oxidant-assisted preparation of CaMoO4 thin film using an irreversible galvanic cell method[J]. Thin Solid Films, 2010, 518(12):3151-3155.
CUI C H, BI J, WU C Y, et al.. Novel electrochemical technique:grain control in preparation of polycrystalline BaMoO4film[J]. Mater. Res. Bull., 2008, 43(5):1160-1163.
CUI C H, BI J, GAO D J. Room-temperature preparation of highly crystallized CaWO4film by a galvanic cell method[J]. Mater. Lett., 2008, 62(15):2222-2224.
ZHANG L, LI S C. Empirical atom model of Vegard's law[J]. Phys. B, 2014, 434:38-43.
0
Views
50
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution