Supported by Science and Technology Development Planning Project of Jilin Province (20160101294JC);China Postdoctoral Science Foundation;National Found for Fostering Talents of Basic Science (J1103202)
LIU Guo-feng, FU Zuo-ling,. Synthesis and Temperature Sensing of CaF<sub>2</sub>: Er<sup>3+</sup>,Yb<sup>3+</sup> Nanoparticles with Upconversion Fluorescence[J]. Chinese Journal of Luminescence, 2017,38(2): 133-138
LIU Guo-feng, FU Zuo-ling,. Synthesis and Temperature Sensing of CaF<sub>2</sub>: Er<sup>3+</sup>,Yb<sup>3+</sup> Nanoparticles with Upconversion Fluorescence[J]. Chinese Journal of Luminescence, 2017,38(2): 133-138 DOI: 10.3788/fgxb20173802.0133.
Synthesis and Temperature Sensing of CaF2: Er3+,Yb3+ Nanoparticles with Upconversion Fluorescence
),所合成的样品在293~573 K温度范围内有良好的温敏特性。利用荧光强度比(FIR)技术,测得样品在483 K时具有最大灵敏度0.002 85 K
-1
。
Abstract
CaF
2
:Yb
3+
Er
3+
upconversion nanoparticles (UCNPs) were synthesized by hydrothermal method. The green and red light from
2
H
11/2
/
4
S
3/2
4
I
15/2
and
4
F
9/2
4
I
15/2
of Er
3+
were investigated in detail by using the power depended luminescence intensity under 980 nm excitation. Afterwards
the as-obtained sample was proved that it had good temperature sensing property in the range of 293-573 K based on thermal coupled levels (TCLs) of Er
3+
(
2
H
11/2
/
4
S
3/2
)
simultaneously the maximum sensitivity of sample was obtained at 483 K (0.002 85 K
-1
) by utilizing fluorescence intensity ratio (FIR) technique. All the experiment data indicate that the sample has great luminescence property and excellent potential in temperature sensing.
关键词
Keywords
references
SINGH S K, KUMAR K, RAI S B. Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry[J]. Sens. Actuators A: Phys., 2009, 149(1):16-20.
ZHAO J, WU J, XUE J, et al.. Au/NaYF4:Yb,Er binary superparticles:synthesis and optical properties[J]. Isr. J. Chem., 2016, 56(4):242-248.
HEMMER E, QUINTANILLA M, LEGARE F, et al.. Temperature-induced energy transfer in dye-conjugated upconverting nanoparticles:a new candidate for nanothermometry[J]. Chem. Mater., 2015, 27(1):235-244.
MATIOLI E, BRINKLEY S, KELCHNER K M, et al.. High-brightness polarized light-emitting diodes[J]. Light-Sci. Appl., 2012, 1:e22.
WANG G, PENG Q, LI Y. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(40):14200.
LI P, PENG Q, LI Y. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals[J]. Adv. Mater., 2009, 21(19):1945-1948.
YIN W, ZHAO L, ZHOU L, et al.. Enhanced Red Emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging[J]. Chem-Eur. J., 2012, 18(30):9239-9245.
LI L, GUO C, JIANG S, et al.. Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing[J]. RSC Adv., 2014, 4(13):6391-6396.
ZHANG C, LI C, PENG C, et al.. Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers[J]. Chem-Eur. J., 2010, 16(19):5672-5680.
WANG F, LIU X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev.. 2009, 38(4):976-989.
WONG H T, CHAN H L W, HAO J H. Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles[J]. Appl. Phys. Lett.. 2009, 95(2):022512.
BRITES C D S, LIMA P P, SILVA N J O, et al.. Lanthanide-based luminescent molecular thermometers[J]. New J. Chem.. 2011, 35(6):1177-1183.
QIN W P, LIU Z Y, SIN C N, et al. Multi-ion cooperative processes in Yb3+ clusters[J]. Light-Sci. Appl., 2014, 3:e193.
YIN W, TIAN G, REN W, et al.. Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy[J]. Dalton Trans., 2014, 43(10):3861-3870.
LEN-LUIS S F, RODRGUEZ-MENDOZA U R, MARTN I R, et al.. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors[J]. Sens. Actuators B:Chem., 2013, 176:1167-1175.
ADHIKARI R, CHOI J, NARRO-GARC A R, et al.. Understanding the infrared to visible upconversion luminescence properties of Er3+/Yb3+ co-doped BaMoO4 nanocrystals[J]. J. Solid State Chem., 2014, 216:36-41.
WANG S, ZHOU H, WANG X, et al.. Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals[J]. J. Phys. Chem. Solids, 2016, 98:28-31.
MENG Q, LIU T, DAI J, et al.. Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals[J]. J. Lumin., 2016, 179:633-638.
RAI V K, PANDEY A. Efficient color tunable ZnWO4:Er3+-Yb3+ phosphor for high temperature sensing[J]. J. Disp. Technol., 2016, 12(11):1472-1477.
KUMAR A, TIWARI S P, KUMAR K, et al.. Structural and optical properties of thermal decomposition assisted Gd2O3:Ho3+/Yb3+ upconversion phosphor annealed at different temperatures[J]. Spectrochim. Acta A, 2016, 167:134-141.
DONG B, CAO B, HE Y, et al.. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides[J]. Adv. Mater., 2012, 24(15):1987-1993.
LEN-LUIS S F, RODRGUEZ-MENDOZA U R, LALLA E, et al.. Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass[J]. Sens. Actuators B:Chem., 2011, 158(1):208-213.
CAO B S, HE Y Y, FENG Z Q, et al.. Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor[J]. Sens. Actuators B: Chem., 2011, 159(1):8-11.
Dual-mode Optical Thermometry with High Sensitivity Achieved in Na3Y(VO4)2∶Yb3+/Er3+
Structure Change of GdF3:Yb3+,Er3+ and Influence on Properties of Upconversion Luminescence by High Temperature Annealing
Enhancement of NaErF4 Nanostructure Upconversion Luminescence with K+ Doping
Laser Irradiation Induced Temperature Effect of NaY(WO4)2:Tm3+, Yb3+ Using Er3+ as Optical Temperature Sensor
Related Author
XIANG Guotao
YI Yuanyuan
ZHANG Yu
XIONG Ming
XU Qinyu
CHEN Hongdou
CHANG Ying
YAO Lu
Related Institution
Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications
Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
University of Chinese Academy of Sciences, Beijing 100049, China