LIU Shi-tao, WANG Li, WU Fei-fei etc. Temperature-dependent Carrier Leakage in InGaN/GaN Multiple Quantum Wells Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2017,38(1): 63-69
LIU Shi-tao, WANG Li, WU Fei-fei etc. Temperature-dependent Carrier Leakage in InGaN/GaN Multiple Quantum Wells Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2017,38(1): 63-69 DOI: 10.3788/fgxb20173801.0063.
Temperature-dependent Carrier Leakage in InGaN/GaN Multiple Quantum Wells Light-emitting Diodes
we directly observed the relationship between the degree of carrier leakage and the temperature in InGaN multiple quantum wells. When LED's working temperature rises from room temperature to 360 K
the photocurrent increases under the same light intensity. The increase of the sample's photocurrent means larger amount of carrier leakage when the temperature rises. At the same time
it is found that the carriers leak more in a lower density
and the increase of photocurrent is related to the emission photon energy. The model of quantum well-quantum dot can explain the phenomena observed in the experiment
such as the rise of temperature shows little influence on carrier leakage when the excitation light wavelength is relatively short
and causes more carrier leakage when the emission light wavelength is longer. Also
this model can well explain that the carriers leak more in a lower density and leak less in a higher density when the temperature rises. The experiment results suggest that the carrier leakage is the dominant mechanism for T-droop effect when the temperature rises from 300 to 360 K.
关键词
Keywords
references
NAKAMURA S, MUKAI T, SENOH M. High-power GaN P-N junction blue-light-emitting diodes[J]. Jpn. J. Appl. Phys., 1991, 30(12A):L1998-L2001.
金尚忠, 张树生, 侯民贤. 白光照明LED灯温度特性的研究[J]. 光源与照明, 2004(4):6-8. JIN S Z, ZHANG S S, HOU M X. The research of temperature characteristic in white light LED[J]. Lamps Light., 2004(4):6-8. (in Chinese)
CAO K W, FU B L, LIU Z, et al.. Anomalous luminescence efficiency enhancement of short-term aged GaN-based blue light-emitting diodes[J]. J. Semicond., 2016, 37(1):014008.
KIM M H, SCHUBERT M F, DAI Q, et al.. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(18):183507-1-3.
MEYAARD D S, LIN G B, SHAN Q F, et al.. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. Appl. Phys. Lett., 2011, 99(25):251115-1-2.
MUKAI T, YAMADA M, NAKAMURA S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes[J]. Jpn. J. Appl. Phys., 1999, 38(7A):3976-3981.
YANG Y, CAO X A, YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes[J]. IEEE Trans. Electron Dev., 2008, 55(7):1771-1775.
HADER J, MOLONEY J V, KOCH S W, et al.. Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes[J]. Appl. Phys. Lett., 2010, 96(22):221106-1-3.
HADER J, MOLONEY J V, KOCH S W. Temperature-dependence of the internal efficiency droop in GaN-based diodes[J]. Appl. Phys. Lett., 2011, 99(18):181127-1-3.
SHEN Y C, MUELLER G O, WATANABE S, et al.. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007, 91(14):141101-1-3.
MEYAARD D S, SHAN Q F, CHO J, et al.. Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities[J]. Appl. Phys. Lett., 2012, 100(8):081106-1-3.
HUH C, SCHAFF W J, EASTMAN L F, et al.. Temperature dependence of performance of InGaN/GaN MQW LEDs with different indium compositions[J]. IEEE Electron Dev. Lett., 2004, 25(2):61-63.
JIANG R, LU H, CHEN D J, et al. Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes[J]. Chin. Phys. B, 2013, 22(4):047805-1-4.
PLOCH N L, EINFELDT S, FRENTRUP M, et al.. Solar blind UV region and UV detector development objectives[J]. Semicond. Sci. Technol., 2013, 28(12):2558-2562.
JANI O, FERGUSON I, HONSBERG C, et al.. Design and characterization of GaN/InGaN solar cells[J]. Appl. Phys. Lett., 2007, 91(13):132117-1-3.
LANG J R, YOUNG N G, FARRELL R M, et al.. Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells[J]. Appl. Phys. Lett., 2012, 101(18):181105-1-5.
SILVACO INC. ATLAS User's Manual 2012[EB/OL]. (2013-10-02). http://www.silvaco.com.
LAI K Y, LIN G J, CHEN C Y, et al.. Origin of hot carriers in InGaN-Based quantum-well solar cells[J]. IEEE Electron Dev. Lett., 2011, 32(2):179-181.
O'DONNELL K P, MARTIN R W, MIDDLETON P G. Origin of luminescence from InGaN diodes[J]. Phys. Rev. Lett., 1999, 82(1):237-240.
KRESTNIKOV I L, LEDENTSOV N N, HOFFMANN A, et al.. Quantum dot origin of luminescence in InGaN-GaN structures[J]. Phys. Rev. B, 2002, 66(15):155310-1-5.
CHANG H J, CHEN C H, CHEN Y F, et al.. Direct evidence of nanocluster-induced luminescence in InGaN epifilms[J]. Appl. Phys. Lett., 2005, 86(86):021911-1-3.
SUN Q, YAN W, FENG M X, et al.. GaN-on-Si blue/white LEDs:epitaxy, chip, and package[J]. J. Semicond., 2016, 37(4):044006.
SANTI C D, MENEGHINI M, GRASSAM L, et al.. Role of defects in the thermal droop of InGaN-based light emitting diodes[J]. J. Appl. Phys., 2016, 119(9):094501.