FU Yao, SHI Yue, WANG Zhao-yang etc. High-purity and Color-tunable Up-conversion Luminescence of YVO<sub>4</sub>: Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2017,38(1): 7-12
FU Yao, SHI Yue, WANG Zhao-yang etc. High-purity and Color-tunable Up-conversion Luminescence of YVO<sub>4</sub>: Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2017,38(1): 7-12 DOI: 10.3788/fgxb20173801.0007.
High-purity and Color-tunable Up-conversion Luminescence of YVO4: Yb3+,Er3+ Nanoparticles
nanoparticles with tetragonal zircon structure were prepared by co-precipitation method. The average particle size is 80 nm. Under 1 550 and 980 nm excitation
the observed emissions of the particles are similar and locate near 513-573 nm and 634-706 nm corresponding to
2
H
11/2
/
4
S
3/2
4
I
15/2
and
4
F
9/2
4
I
15/2
transitions of Er
3+
ions
respectively. By controlling the excitation wavelength
color-tunable and high-purity green and red up-conversion luminescence(UCL) from the same component nanoparticles can be obtained. Under the excitation of 980 nm
the intensity ratio value of green and red emission reaches 29.5. However
when the excitation source is replaced by 1 550 nm diode laser
a bright red emission with high color purity is observed. Here
the maximum value of the intensity ratio of red and green emission is 37.97. Furthermore
the different UCL transition mechanisms of the phosphor excited by 980 nm and 1 550 nm are discussed in detail by means of Er
3+
energy model.
关键词
Keywords
references
QIAO X S, FAN X P, XUE Z, et al.. Upconversion luminescence of Yb3+/Tb3+/Er3+-doped fluorosilicate glass ceramics containing SrF2 nanocrystals[J]. J. Alloys Compd., 2011, 509(11):4714-4721.
SINGH N S, NINGTHOUJAM R S, PHAOMEI G, et al.. Re-dispersion and film formation of GdVO4: Ln3+ ( Ln3+=Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles:particle size and luminescence studies[J]. Dalton Trans., 2012, 41(15):4404-4412.
STOUWDAM J W, VAN VEGGEL F C J M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles[J]. Nano Lett., 2002, 2(7):733-737.
MEETEI S D, SINGH S D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2:Eu3+ nanocrystals[J]. J. Lumin., 2014, 147:328-335.
RIWOTZKI K, HAASE M. Wet-chemical synthesis of doped colloidal nanoparticles:YVO4: Ln ( Ln =Eu, Sm, Dy)[J]. J. Phys. Chem. B, 1998, 102(50):10129-10135.
WILLIAMS D K, BIHARI B, TISSUE B M, et al.. Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals[J]. J. Phys. Chem. B, 1998, 102(6):916-920.
FU J P, ZHANG Q H, LI Y G, et al.. Highly luminescent red light phosphor CaTiO3:Eu3+ under near-ultraviolet excitation[J]. J. Lumin., 2010, 130(2):231-235.
PEREIRA P F S, DE MOURA A P, NOGUEIRA I C, et al.. Study of the annealing temperature effect on the structural and luminescent properties of SrWO4:Eu phosphors prepared by a non-hydrolytic sol-gel process[J]. J. Alloys Compd., 2012, 526:11-21.
ANITHA M, RAMAKRISHNAN P, CHATTERJEE A, et al.. Spectral properties and emission efficiencies of GdVO4 phosphors[J]. Appl. Phys. A, 2002, 74(2):153-162.
MEETEI S D, SINGH M D, SINGH S D. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4:Dy3+ nano-lattices[J]. J. Appl. Phys., 2014, 115(20):204910-1-10.
XU W, WANG Y, BAI X, et al.. Controllable synthesis and size-dependent luminescent properties of YVO4:Eu3+ nanospheres and microspheres[J]. J. Phys. Chem. C, 2010, 114(33):14018-14024.
YANG K S, ZHENG F, WU R N, et al.. Upconversion luminescent properties of YVO4:Yb3+, Er3+ nano-powder by sol-gel method[J]. J. Rare Earths, 2006, 24(S1):162-166.
TOLSTIK N A, TROSHIN A E, KURILCHIK S V, et al.. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+, Yb3+:YVO4 crystal[J]. Appl. Phys. B, 2007, 86(2):275-278.
TSANG Y H, BINKS D J. Record performance from a Q-switched Er3+:Yb3+:YVO4 laser[J]. Appl. Phys. B, 2009, 96(1):11-17.
KUMAR G A, POKHREL M, SARDAR D K. Intense visible and near infrared upconversion in M2O2S:Er ( M =Y, Gd, La) phosphor under 1550 nm excitation[J]. Mater. Lett., 2012, 68:395-398.
WANG H, XING M M, LUO X X, et al.. Upconversion emission colour modulation of Y2O2S:Yb, Er under 1.55m and 980 nm excitation[J]. J. Alloys Compd., 2014, 587:344-348.
WANG H, JIANG T, XING M M, et al.. Up-conversion luminescence of Y2O3:Yb, Er under 1.55m excitation[J]. Ceramics Int., 2015, 41(1):259-263.
ZHANG Y M, LI Y H, LI P, et al.. Preparation and upconversion luminescence of YVO4:Er3+, Yb3+[J]. Int. J. Miner. Metall. Mater., 2010, 17(2):225-228.
KUSHIDA T, GEUSIC J E. Optical refrigeration in Nd-doped yttrium aluminum garnet[J]. Phys. Rev. Lett., 1968, 21(16):1172-1175.
CHANG M C, ELLIOTT S, GUSTAFSON T K, et al.. Observation of anti-Stokes fluorescence in organic dye solutions[J]. IEEE J. Quant. Electron., 1972, 8(6):527-528.
Preparation, Luminescence Mechanism and Temperature Sensing Properties of KYb2F7∶2% Er3+
Advances in Luminescence Thermal Enhancement of Rare Earth Activated Phosphors
Up-conversion Luminescence and Temperature Sensing Performance of Novel Ba3In(PO4)3∶Yb3+, Ho3+ Phosphor
Temperature Sensing Characteristics of Y7O6F9∶Er,Yb/PAN Composite Fibers Based on Up-conversion Luminescence
Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles via Thermolysis Method
Related Author
LI Xinyun
DAI Mengmeng
FU Zuoling
CHEN Rui
LIU Rui
WANG Pengfei
LIN Hang
CHENG Yao
Related Institution
College of Physics, Jilin University
Fujian College, University of Chinese Academy of Sciences
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
School of Chemistry, Fuzhou University
School of Materials Science and Engineering, China University of Geosciences