LIU Feng, WANG Xiao-jun,. Effects of Non-4f States on Pr<sup>3+</sup> Luminescence in Phosphors[J]. Chinese Journal of Luminescence, 2017,38(1): 1-6 DOI: 10.3788/fgxb20173801.0001.
Effects of Non-4f States on Pr3+ Luminescence in Phosphors
may result from the effects of non-4f states in phosphors. Such non-4f states generally refer to the Pr
3+
4f5d state
exciton-like state or charge-transfer state. Here
we present a brief review on Pr
3+
luminescence by the means of emission spectral measurement in several representative phosphors. Several interesting spectral phenomena are reported and reviewed
including the effects of impurity-trapped exciton state and charge-transfer state on the luminescence quenching in the Pr
3+
-activated phosphors. We expect this review is beneficial to the readers to better understand their experimental findings
and to inspire them to design new and improved phosphor systems.
关键词
Keywords
references
SOMMERDIJIK J L, BRIL A, DE JAGER A W. Two photon luminescence with ultraviolet excitation of trivalent praseodymium[J]. J. Lumin., 1974, 8(4):341-343.
PIPER W W, DELUCA J A, HAM F S. Cascade fluorescent decay in Pr3+-doped fluorides:achievement of a quantum yield greater than unity for emission of visible light[J]. J. Lumin., 1974, 8(4):344-348.
SRIVASTAVA A M, BEER W W. Luminescence of Pr3+ in SrAl12O19:observation of two photon luminescence in oxide lattice[J]. J. Lumin., 1997, 71:285-290.
DIALLO P T, BOUTINAUD P, MAHIOU R, et al.. Red luminescence in Pr3+-doped calcium titanates[J]. Phys. Stat. Sol. ( a ), 1997, 160:255-263.
BOUTINAUD P, PINEL E, OUBAHA M, et al.. Making red emitting phosphors with Pr3+[J]. Opt. Mater., 2006, 28:9-13.
BOUTINAUD P, MAHIOU R, CAVALLI E, et al.. Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds[J]. J. Lumin., 2007, 122-123:430-433.
YAMADA H, SUZUKI A, UCHIDA Y, et al.. A scintillator Gd2O2S:Pr,Ce,F for X-ray computed tomography[J]. J. Electrochem. Soc., 1989, 136(9):2713-2716.
SRIVASTAVA A M. Inter- and intraconfigurational optical transitions of the Pr3+ ion for application in lighting and scintillator technologies[J]. J. Lumin., 2009, 129:1419-1421.
SRIVASTAVA A M. Aspects of Pr3+ luminescence in solids[J]. J. Lumin., 2016, 169:445-449.
BLASE G, MEIJERINK A. The temperature dependence of the luminescence of Gd2O2S-Pr3+ upon 4f-5d excitation[J]. Inorg. Chm. Acta, 1989, 160:29-31.
DONEGA C M, MEIJERINK A, BLASE G. Non-radiative relaxation processes of the Pr3+ ion in solids[J]. J. Phys. Chem. Solids, 1995, 56(5):673-685.
CHEN H, LIAN R, YIN M, et al.. Luminescence concentration quenching of 1D2 state in YPO4:Pr3+[J]. J. Phys.: Condensed Matter, 2001, 13:1151-1158.
SRIVASTAVA A M, LECUNA C R, PEREZ D S, et al.. Pressure-induced Pr3+.3P0 luminescence in cubic Y2O3[J]. J. Lumin., 2014, 146:27-32.
PIPER W W, HAM F S, DELUCA J A. YF-Pr3+, a phosphor with a quantum efficiency greater than one for emission of visible light[J]. Bull. Am. Phys. Soc., 1974, 19:257-258.
WANG X J, HUANG S H, LU L, et al.. Energy transfer in Pr3+- and Er3+-codoped CaA112O19 crysta1[J]. Opt. Commun., 2001, 195:405-410.
HUANG S H, WANG X J, MELTZER R S, et al.. The mixing of the 4f2 1S0 state with the 4f5d states in Pr3+ doped SrAl12O19[J]. J. Lumin., 2001, 94-95:119-122.
LIU F, ZHANG J H, LU S Z, et al.. Explicit effects of 4f5d configuration on 4f2-4f2 electric dipole transitions in Pr3+-doped SrAl12O19[J]. Phys.Rev. B, 2006, 74:115112.
BLASE G, DONEGA C M, Luminescence of Pr3+ in indium borate (InBO3)[J]. Solid State Commun., 1994, 92(8):687-688.
DRIGGERS R G, VOLLMERHAUSEN R, DEVITT N, et al.. Impact of speckle on laser range-gated shortwave infrared imaging system target identification performance[J]. Opt. Eng., 2003, 42:738-746.
NACZYNSKI D J, TAN M C, ZEVON M, et al.. Rare-earth-doped biological composites as in vivo shortwave infrared reporters[J]. Nat. Commun., 2013, 4:2199.
IVANOVSKIKH K V, OGIEGLO J M, ZYCH A, et al.. Luminescence temperature quenching for Ce3+ and Pr3+ d-f emission in YAG and LuAG[J]. ECS J. Solid State Sci. Technol., 2013, 2(2):R3148-R3152.
HUANG S H, LU L, JIA W, et al.. The spectral properties of the 1S0 state in SrAl12O19:Pr[J]. Chem. Phys. Lett., 2001, 348:11-16.
VAN DER ENDE B M, AARTS L, MEIJERINK A. Near-infrared quantum cutting for photovoltaics[J]. Adv. Mater., 2009, 21:3073-3077.
VAN WIJNGAARDEN J T, SCHEIDELAAR S, VLUGT T J H, et al.. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple[J]. Phys. Rev. B, 2010, 81:155112.
GUILLE A, PEREIRA A, MOINE B, et al.. NaLaF4:Pr3+,Yb3+, an efficient blue to near infra-red quantum cutter[J]. APL Mater., 2013, 1:062106.
SERRANO D, BRAUD A, DOUALAN J L, et al.. Two-step quantum cutting efficiency in Pr3+-Yb3+ codoped KY3F10[J]. Phys. Rev. B, 2013, 88:205144.
GRZESZKIEWICZ K, MARCINIAK L, STREK W, et al.. Downconversion in Y2Si2O7:Pr3+,Yb3+ polymorphs for its possible application as luminescent concentrators in photovoltaic solar-cells[J]. J. Lumin., 2016, 177:172-177.