LI Lu, LOU Chao-gang, XIE Yu-fei. Concentration and Temperature Characteristics of Quantum Cutting Luminescence in Ce<sup>3+</sup>-Yb<sup>3+</sup> Co-doped YAG Phosphor[J]. Chinese Journal of Luminescence, 2016,37(12): 1445-1450
LI Lu, LOU Chao-gang, XIE Yu-fei. Concentration and Temperature Characteristics of Quantum Cutting Luminescence in Ce<sup>3+</sup>-Yb<sup>3+</sup> Co-doped YAG Phosphor[J]. Chinese Journal of Luminescence, 2016,37(12): 1445-1450 DOI: 10.3788/fgxb20163712.1445.
Concentration and Temperature Characteristics of Quantum Cutting Luminescence in Ce3+-Yb3+ Co-doped YAG Phosphor
the high temperature solid state method. The optical properties of the phosphor were characterized by photoluminescence (PL). Under the excitation of 450 nm
the visible broadband emission from Ce
3+
:5d4f with the central wavelength of 550 nm was observed. The NIR emission around 1 030 nm from Yb
3+
:
2
F
5/2
2
F
7/2
was also observed under the same excitation. The variation of emission intensity with the concentration of Yb
3+
shows that the energy transfer exists between Ce
3+
and Yb
3+
and the quenching concentration of Yb
3+
is 15%. For YAG:1%Ce
3+
15%Yb
3+
sample
the emission spectra and Raman spectra were measured at low temperature (80-300 K). Based on the analyze of temperature characteristics of quantum cutting luminescence
the results show that the phonons of the host material play an important role in the energy transfer from Ce
3+
to Yb
3+
.
关键词
Keywords
references
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J. Appl. Phys., 1961, 32(3):510-519.
VAN SARK W G J H M, MEIJERINK A, SCHROPP R E I, et al.. Enhancing solar cell efficiency by using spectral converters[J]. Sol. Energy Mater. Sol. Cells, 2005, 87(1-4):395-409.
RICHARDS B S. Luminescent layers for enhanced silicon solar cell performance:down-conversion[J]. Sol. Energy Mater. Sol. Cells, 2006, 90(9):1189-1207.
付作岭,董晓睿,盛天琦, 等. 纳米晶体中稀土离子的发光性质及其变化机理研究[J]. 中国光学, 2015, 8(1):139-144. FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J]. Chin. Opt., 2015, 8(1):139-144. (in Chinese)
DENG K M, GONG T, HU L X, et al.. Efficient near-infrared quantum cutting in NaYF4:Ho3+,Yb3+ for solar photovoltaics[J]. Opt. Express, 2011, 19(3):1749-1754.
SHAO L M, JING X P. Near-infrared luminescence of Tb3+-Yb3+ and Ce3+-Yb3+ co-doped Y3Al5O12[J]. ECS J. Solid State Sci. Technol., 2012, 1(1):R22-R26.
ZHAO J, GUO C F, LI T. Near-infrared down-conversion and energy transfer mechanism of Ce3+-Yb3+ co-doped Ba2Y-(BO3)2Cl phosphors[J]. ECS J. Solid State Sci. Technol., 2016, 5(1):R3055-R3058.
SONTAKKE A D, UEDA J, KATAYAMA Y, et al.. Role of electron transfer in Ce3+ sensitized Yb3+ luminescence in borate glass[J]. J. Appl. Phys., 2015, 117(1):013105-1-7.
ELLEUCH R, SALHI R, DESCHANVRES J L, et al.. Antireflective downconversion ZnO:Er3+,Yb3+ thin film for Si solar cell applications[J]. J. Appl. Phys., 2015, 117(5):055301-1-6.
张继森,张立国,任建岳,等. Ce3+和Yb3+共掺杂的Y3Al5O12可见及量子剪裁近红外发光性质[J]. 发光学报, 2014, 35(8):891-896. ZHANG J S, ZHANG L G, REN J Y, et al.. Properties of visible and NIR emissions with quantum cutting in Ce3+-Yb3+-codoped Y3Al5O12 powder materials[J]. Chin. J. Lumin., 2014, 35(8):891-896. (in Chinese)
李云青,崔彩娥,黄平,等. Pr3+, Yb3+双掺的CaWO4荧光粉的近红外量子剪裁[J]. 光子学报, 2015, 44(7):0716001-1-5. LI Y Q, CUI C E, HUANG P, et al.. Near infrared quantum cutting in Pr3+, Yb3+ co-doped CaWO4 phosphors[J]. Acta Photon. Sin., 2015, 44(7):0716001-1-5. (in Chinese)
YE S, LI Y J, YU D C, et al.. Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba, Sr)2CaMoO6:Yb3+,Eu3+[J]. J. Appl. Phys., 2011, 110(1):013517-1-5.
YANG P Z, DENG P Z, YIN Z W. Concentration quenching in Yb:YAG[J]. J. Lumin., 2002, 97(1):51-54.
TIAN B N, CHEN B J, TIAN Y, et al.. Excitation pathway and temperature dependent luminescence in color tunable Ba5Gd8Zn4O21:Eu3+ phosphors[J]. J. Mater. Chem. C, 2013, 1(12):2338-2344.
BACHMANN V, RONDA C, MEIJERINK A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce[J]. Chem. Mater., 2009, 21(10):2077-2084.
ZHOU J J, ZHUANG Y X, YE S, et al.. Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses[J]. Appl. Phys. Lett., 2009, 95(14):141101-1-3.
VERGEER P, VLUGT T J H, KOX M H F, et al.. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+[J]. Phys. Rev. B, 2005, 71(1):014119.
ZHENG W, ZHU H M, LI R F, et al.. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+ phosphors[J]. Phys. Chem. Chem. Phys., 2012, 14(19):6974-6980.
HUANG K, RHYS A. Theory of light absorption and non-radiative transitions in F-centres[J]. Proc. R. Soc. A, 1950, 204(1078):406-423.