LIU Qing-sheng, YOU Zheng, ZENG Shao-jun etc. Infrared Radiation Properties of <em>B</em> Bit Double Doped LaMg<sub>0.34</sub>Ni<em><sub>x</sub></em>Fe<sub>0.66-<em>x</em></sub>O<sub>3</sub> in Perovskite Structure[J]. Chinese Journal of Luminescence, 2016,37(11): 1316-1322
LIU Qing-sheng, YOU Zheng, ZENG Shao-jun etc. Infrared Radiation Properties of <em>B</em> Bit Double Doped LaMg<sub>0.34</sub>Ni<em><sub>x</sub></em>Fe<sub>0.66-<em>x</em></sub>O<sub>3</sub> in Perovskite Structure[J]. Chinese Journal of Luminescence, 2016,37(11): 1316-1322 DOI: 10.3788/fgxb20163711.1316.
Infrared Radiation Properties of B Bit Double Doped LaMg0.34NixFe0.66-xO3 in Perovskite Structure
and their emission rates in the near infrared band were studied and compared. The results show that the infrared emission rate in 0.2-2 m waveband of LaMg
0.34
Ni
0.23
Fe
0.43
O
3
(Mg
2+
mole fraction of 34%
Ni
2+
mole fraction of 23%) is 0.966
much higher than that of undoped LaFeO
3
(0.446). For Mg
2+
-Ni
2+
co-doped LaFeO
3
Mg
2+
Ni
2+
come into lanthanum ferrite lattice to substitute Fe
3+
which introduces the impurity levels and increases the oxygen vacancy concentration. The impurity energy absorption and absorption of oxygen vacancies are improved
and the lattice distortion induced by doping makes the lattice vibration absorption enhance. In addition
the polarized transition of electrons between Fe
3+
and Fe
4+
greatly enhances the absorption performance of the compounds in the corresponding spectra. So
Mg
2+
-Ni
2+
co-doping can significantly improve the infrared emission rate of LaFeO
3
.
关键词
Keywords
references
徐庆,陈文,郑锦霞,等. 过渡金属氧化物体系红外辐射陶瓷的研制 [J]. 陶瓷学报, 2000, 21(1):18-22. XU Q, CHEN W, ZHENG J X, et al.. Development of transitional metal oxides system infrared radiation ceramics [J]. J. Ceram., 2000, 21(1):18-32. (in Chinese)
HE X D, LI Y B, WANG L D, et al.. High emissivity coatings for high temperature application: progress and prospect [J]. Thin Solid Films, 2009, 517(17):5120-5129.
BENKO I. High infrared emissivity coating for energy conservation and protection of inner surfaces in furnaces [J]. Int. J. Global Energy Issues, 2002, 17(1-2):60-67.
DAHAN N, NIV A, BIENER G, et al.. Extraordinary coherent thermal emission from SiC due to coupled resonant cavities [J]. J. Heat Transfer., 2008, 130(11):112401-1-5.
SIMMONS J A, EVANS T G, CHURCHWARD R A, et al.. Thermal protective coating: U.S. Patent 7105047 [P]. 2006-09-12.
PRESSER V, NICKEL K G. Silica on silicon carbide [J]. Crit. Rev. Solid State Mater. Sci., 2008, 33(1):1-99.
MATSUSHITA J, KOMARNENI S. High temperature oxidation of silicon hexaboride ceramics [J]. Mater. Res. Bull., 2001, 36(5-6):1083-1089.
LIU H Z, LIU Z G, OUYANG J H, et al.. Influences of lattice vibration and electron transition on thermal emissivity of Nd3+ doped LaMgAl11O19 hexaaluminates for metallic thermal protection system [J]. Appl. Phys. Lett., 2012, 101(16):161903-1-4.
WANG S M. Effects of Fe on crystallization and properties of a new high infrared radiance glass-ceramics [J]. Environ. Sci. Technol., 2010, 44(12):4816-4820.
WU X Y, YU H B, DONG H. Enhanced infrared radiation properties of CoFe2O4 by doping with Y3+ via sol-gel auto-combustion [J]. Ceram. Int., 2014, 40(8):12883-12889.
POVODEN-KARADENIZ E, GRUNDY A N, CHEN M, et al.. Thermodynamic assessment of the La-Fe-O system [J]. J. Phase Equilib. Diff., 2009, 30(4):351-366.
任志华,闰柏军,张家芸. La0.9Sr0.1Ga0.8-xCoxMg0.2O3-(x=0, 0.05, 0.08)的结构和导电性 [J]. 青岛科技大学学报(自然科学版), 2009, 30(3):189-193. REN Z H, YAN B J, ZHANG J Y. Crystal structure and electrical conductivity of La0.9Sr0.1Ga0.8-xCoxMg0.2O3- (x=0, 0.05, 0.08) [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2009, 30(3):189-193. (in Chinese)
徐涛,范维涛,林毓韬,等. 钙钛矿结构LaFe1-xMgxO3纳米粉体的甲醛气敏特性研究 [J]. 功能材料, 2010, 41(8):1299-1301. XU T, FAN W T, LIN Y T, et al.. Study on formaldehyde-sensing characteristics of perovskite LaFe1-xMgxO3 nanopowders [J]. J. Funct. Mater., 2010, 41(8):1299-1301. (in Chinese)
张晓静,李华举,李勇,等. Sr取代LaFeO3钙钛矿的结构性质和催化性能 [J]. 催化学报, 2012, 33(7):1109-1114. ZHANG X J, LI H J, LI Y, et al.. Structural properties and catalytic activity of Sr-substituted LaFeO3 perovskite [J]. Chin. J. Catal., 2012, 33(7):1109-1114. (in English)
YE J K, BU C H, HAN Z, et al.. Flame-spraying synthesis and infrared emission property of Ca2+/Cr3+ doped LaAlO3 microspheres [J]. J. Eur. Ceram. Soc., 2015, 35(11):3111-3118.
BHATT H, BAHADUR J, DEO M N, et al.. Effects of calcination on microscopic and mesoscopic structures in Ca- and Sr-doped nano-crystalline lanthanum chromites [J]. J. Solid State Chem., 2011, 184(1):204-213.
KARLSSON M, MATIC A, BERASTEGUI P, et al.. Vibrational properties of proton conducting double perovskites [J]. Solid State Ionics, 2005, 176(39-40):2971-2974.
辇理. Mg掺杂LaFeO3纳米粒子及稀土元素掺杂的LaPO4纳米棒的合成与性质表征 [D]. 长春:吉林大学, 2013. NIAN L. Synthesis and Characterization of Mg-doped LaFeO3 Nanoparticles and Rare Earth Elements Doped LaPO4 Nanorods [D]. Changchun: Jilin University, 2013. (in Chinese)
SINGH A, PANDEY V, KOTNALA R K, et al.. Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3-0.1BaTiO3 [J]. Phys. Rev. Lett., 2008, 101(24):247602-1-4.
KE Q Q, LOU X J, WANG Y, et al.. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films [J]. Phys. Rev. B, 2010, 82(2):024102.
WANG J, SCHOLL A, ZHENG H, et al.. Response to comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures" [J]. Science, 2005, 307(5713):1203.
YOON K J, ZINK P A, GOPALAN S, et al.. Defect chemistry and electrical properties of (La0.8Ca0.2)0.95FeO3- [J]. J. Electrochem. Soc., 2009, 156(7):B795-B800.
ZINK P A, YOON K J, PAL U B, et al.. Analysis of the electronic and ionic conductivity of calcium-doped lanthanum ferrite [J]. Electrochem. Solid State Lett., 2009, 12(10):B141-B143.
VIDAL K, RODRGUEZ-MARTNEZ L M, ORTEGA-SAN-MARTN L, et al.. Isolating the effect of doping in the structure and conductivity of (Ln1-xMx)FeO3- perovskites [J]. Solid State Ionics, 2007, 178(21-22):1310-1316.
CHEN X B, LIU L, YU P Y, et al.. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals [J]. Science, 2011, 331(6018):746-750.