浏览全部资源
扫码关注微信
燕山大学 河北省测试计量技术及仪器重点实验室,河北 秦皇岛,066000
Received:22 April 2016,
Revised:15 June 2016,
Published:05 October 2016
移动端阅览
王书涛, 苑媛媛, 王玉田等. 基于三维荧光与GA-RBF神经网络对茶叶中氯菊酯农药残留的检测[J]. 发光学报, 2016,37(10): 1267-1274
WANG Shu-tao, YUAN Yuan-yuan, WANG Yu-tian etc. Detection of Permethrin Pesticide Residue in Teas Based on Spectrum Fuorescence and GA-RBF Neural Network[J]. Chinese Journal of Luminescence, 2016,37(10): 1267-1274
王书涛, 苑媛媛, 王玉田等. 基于三维荧光与GA-RBF神经网络对茶叶中氯菊酯农药残留的检测[J]. 发光学报, 2016,37(10): 1267-1274 DOI: 10.3788/fgxb20163710.1267.
WANG Shu-tao, YUAN Yuan-yuan, WANG Yu-tian etc. Detection of Permethrin Pesticide Residue in Teas Based on Spectrum Fuorescence and GA-RBF Neural Network[J]. Chinese Journal of Luminescence, 2016,37(10): 1267-1274 DOI: 10.3788/fgxb20163710.1267.
采用FS920稳态荧光光谱仪对绿茶和铁观音这两种不同品种茶叶的氯菊酯溶液的荧光光谱特性进行了分析,发现这两种茶叶的荧光峰均位于
ex
/
em
=(390~410)/675 nm,氯菊酯的荧光峰
ex
/
em
=300/330 nm。为了准确测定这两种茶叶中氯菊酯农药残留的含量,采用遗传算法优化的径向基函数神经网络对其进行了分析,当训练到74次时,均方差精度达到10
-3
,绿茶、铁观音的氯菊酯溶液预测样本的平均回收率分别为99.35%和98.89%,平均相对标准偏差分别为1.25%和1.21%。与建立的径向基函数神经网络模型进行了对比,结果表明三维荧光分析技术与遗传算法优化的径向基函数神经网络相结合能够较好地检测出茶叶中氯菊酯农药残留的含量,检测灵敏度大大提高,检出限范围广,可达0.004 8~24 mg/kg,远低于欧盟规定的茶叶中氯菊酯最高残留限量0.1 mg/kg,为检测农药残留提供了一种快速简便的新方法。
The fluorescence spectra of permethrin in green tea and tieguanyin were studied. The fluorescence characteristic peaks of green tea and tieguanyin existed at
ex
/
em
=(390-410)/675 nm
while the permethrin fluorescence characteristic peak existed at
ex
/
em
=300/330 nm. To determine the content of permethrin in teas
a new method of a radial basis function (RBF) neural network based on a genetic algorithm (GA) was proposed. When the training is to 74
the precision of the mean square deviation reaches 10
-3
. The average forecast recovery rates of permethrin in green tea and tieguanyin are 99.35% and 98.89%
the average relative standard deviation are 1.25% and 1.21%
and the detection limit range is from 0.004 8 to 24 mg/kg
which is far lower than that of the EU rules of permethrin in tea maximum residue limits standards. Through the contrast of the RBF neural network model
it is found that the three-dimensional fluorescence analysis technology combined with GA-RBF neural network can predict the content of permethrin pesticide residue in teas quickly and easily
the detection sensitivity and the precision are higher.
刘腾飞,杨代凤,董明辉,等. 分散固相萃取-气相色谱法测定茶鲜叶中7种拟除虫菊酯类农药残留 [J]. 农药学学报, 2015, 17(5):571-578. LIU T F, YANG D F, DONG M H, et al.. Determination of pyrethroid residues in fresh tea leaves by dispersive solid phase extraction and gas chromatography [J]. Chin. J. Pest. Sci., 2015, 17(5):571-578. (in Chinese)
TOUMI H, BOUMAIZA M, MILLET M, et al.. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of daphnia magna (crustacea, cladocera) [J]. Sci. Total Environ., 2013, 458-460:47-53.
LI B, ZENG F G, DONG Q C, et al.. Rapid determination method for 12 pyrethroid pesticide residues in tea by stir bar sorptive extraction-thermal desorption-gas chromatography [J]. Phys. Proced., 2012, 25:1776-1780.
BOONCHIANGMA S, NGEONTAE W, SRIJARANAI S. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography [J]. Talanta, 2012, 88:209-215.
GARCA-RODRGUEZ D, CELA-TORRIJOS R, LORENZO-FERREIRA R A, et al.. Analysis of pesticide residues in seaweeds using matrix solid-phase dispersion and gas chromatography-mass spectrometry detection [J]. Food Chem., 2012, 135(1):259-267.
FERENTINOS K P, YIALOURIS C P, BLOUCHOS P, et al.. The use of artificial neural networks as a component of a cell-based biosensor device for the detection of pesticides [J]. Proced. Eng., 2012, 47:989-992.
HIROSAWA N, UEYAMA J, KONDO T, et al.. Effect of DDVP on urinary excretion levels of pyrethroid metabolite 3-phenoxybenzoic acid in rats [J]. Toxicol. Lett., 2011, 203(1):28-32.
杨丽丽,王玉田,鲁信琼. 三维荧光光谱结合二阶校正法用于石油类污染物的识别和检测 [J]. 中国激光, 2013, 40(6):0615002-1-6. YANG L L, WANG Y T, LU X Q. Identification and measurement of petroleum pollutant by three-dimensional matrix fluorescence with second-order calibration methods [J]. Chin. J. Lasers, 2013, 40(6):0615002-1-6. (in Chinese)
马君,毛伟征,李颖,等. 自体荧光光谱检测胃浆膜识别胃癌组织 [J]. 中国激光医学杂志, 2005, 14(2):74-79. MA J, MAO W Z, LI Y, et al.. Identification of gastric cancer by autofluorescence spectrum in gastric serosa [J]. Chin. J. Laser Med. Surg., 2005, 14(2):74-79. (in Chinese)
余晓娅,张玉钧,殷高方,等. 基于偏最小二乘回归的藻类荧光光谱特征波长选取 [J]. 光学学报, 2014, 34(9):0930002-1-6. YU X Y, ZHANG Y J, YIN G F, et al.. Feature wavelength selection of phytoplankton fluorescence spectra based on partial least squares [J]. Acta Opt. Sinica, 2014, 34(9):0930002-1-6. (in Chinese)
朱焯炜,阙立志,吴亚敏,等. 三维荧光光谱结合PARAFAC和GA对中国白酒品牌的鉴别 [J]. 中国激光, 2015, 42(6):0615002-1-6. ZHU Z W, QUE L Z, WU Y M, et al.. Identification of Chinese liquors by three-dimensional fluorescence spectra combined with PARAFAC and genetic algorithm [J]. Chin. J. Lasers, 2015, 42(6):0615002-1-6. (in Chinese)
王书涛,陈东营,魏蒙,等. 荧光光谱法和PSO-BP神经网络在山梨酸钾浓度检测中的应用 [J]. 中国激光, 2015, 42(5):0515004. WANG S T, CHEN D Y, WEI M, et al.. Application of fluorescence spectroscopy and PSO-BP neural network in the detection of potassium sorbate concentration [J]. Chin. J. Lasers, 2015, 42(5):0515004. (in Chinese)
刘银,付广伟,张燕君,等. 基于径向基函数神经网络的传感布里渊散射谱特征提取 [J]. 光学学报, 2012, 32(2):0206002-1-7. LIU Y, FU G W, ZHANG Y J, et al.. A novel method for brillouin scattering spectrum of distributed sensing systems based on radial basis function neural networks to extract features [J]. Acta Opt. Sinica, 2012, 32(2):0206002-1-7. (in Chinese)
张健,杨锐. 基于径向基函数神经网络的脉冲激光薄板焊接变形预测 [J]. 中国激光, 2011, 38(11):1103002-1-4. ZHANG J, YANG R. Prediction of pulsed laser welding of thin plate based on radial basis function neural network [J]. Chin. J. Lasers, 2011, 38(11):1103002-1-4. (in Chinese)
刘倩倩,王春艳,史晓凤,等. 基于RBF神经网络的较低浓度下同步荧光光谱的溢油鉴别 [J]. 光谱学与光谱分析, 2012, 32(4):1012-1015. LIU Q Q, WANG C Y, SHI X F, et al.. Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network [J]. Spectrosc. Spect. Anal., 2012, 32(4):1012-1015. (in Chinese)
朱树先,张仁杰. BP和RBF神经网络在人脸识别中的比较 [J]. 仪器仪表学报, 2007, 28(2):375-379. ZHU S X, ZHANG R J. Comparison with BP and RBF neural network used in face recognition [J]. Chin. J. Sci. Instrum., 2007, 28(2):375-379. (in Chinese)
POULTANGARI I, SHAHNAZI R, SHEIKHAN M. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm [J]. ISA Trans., 2012, 51(5):641-648.
潘钊. 基于荧光光谱分析的石油类污染物识别测量方法及其实验研究 [D]. 秦皇岛:燕山大学, 2012. PAN Z. Method and Experimental Study on Identification and Measurement of Petroleum Pollutant Based on Fluorescence Spectroscopy [D]. Qinhuangdao: Yanshan University, 2012. (in Chinese)
乔俊飞,韩红桂. RBF神经网络的结构动态优化设计 [J]. 自动化学报, 2010, 36(6):865-872. QIAO J F, HAN H G. Optimal structure design for RBFNN structure [J]. Acta Autom. Sinica, 2010, 36(6):865-872. (in Chinese)
许兆美,周建忠,黄舒,等. 基于遗传算法优化反向传播神经网络的激光铣削层质量预测 [J]. 中国激光, 2013, 40(6):0603004-1-5. XU Z M, ZHOU J Z, HUANG S, et al.. Quality prediction of laser milling based on optimized back propagation networks by genetic algorithms [J]. Chin. J. Lasers, 2013, 40(6):0603004-1-5. (in Chinese)
0
Views
274
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution