WANG Zhi-bin, HAN Huan-huan, CHAI Jun-fu etc. Prism Surface Plasmons Resonance Sensor Based on The Porous Silicon[J]. Chinese Journal of Luminescence, 2016,37(9): 1152-1158
WANG Zhi-bin, HAN Huan-huan, CHAI Jun-fu etc. Prism Surface Plasmons Resonance Sensor Based on The Porous Silicon[J]. Chinese Journal of Luminescence, 2016,37(9): 1152-1158 DOI: 10.3788/fgxb20163709.1152.
Prism Surface Plasmons Resonance Sensor Based on The Porous Silicon
A prism surface plasmon resonance incentive model based on the porous silicon is proposed:prism base-metal-porous silicon layer-environmental media. The refractive index of the porous silicon will change with the sample absorbed on the porous silicon which causes the offset of surface plasmon resonance spectrum. Metal film and porous silicon layer compose the resonance film. According to the thin film optics and waveguide
the effect of resonance film on surface plasmons resonance spectrum is analyzed. With the method of finite element analysis
the resonance spectrum of the designed structure is obtained by numerical simulation. Through the comparison to the results
analysis and parameter optimization of the designed model are conducted. The results of analysis state the sensing performance of incentive model based on porous silicon is greatly improved compared by the common Kretschmann incentive model. The sensitivity of sensing structure is analyzed when the low concentration of ethylene glycol solution is as the sample. It can be obtained that the sensitivity is about 267.85()/RIU. That is about 2.13 times more than the sensitivity of the common Kretschmann incentive model. The resonance sensing of the designed structure provides theoretical reference for sample concentration detection
biological sensing and other aspects.
关键词
Keywords
references
CHIANG H P, WANG Y C, LEUNG P T, et al.. A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance[C]. Proceedings of The 4th Pacific Rim Conference on Lasers and Electro-Optics, Chiba, Japan, 2001, 1:I.
DE JULIN FERNNDEZ C, MANERA M G, PELLEGRINI G, et al.. Surface plasmon resonance optical gas sensing of nanostructured ZnO films[J]. Sens. Actuators B:Chem., 2008, 130(1):531-537.
MORJAN M, ZCHNER H, CAMMANN K. Contributions to a reliable hydrogen sensor based on surface plasmon surface resonance spectroscopy[J]. Surf. Sci., 2009, 603(10-12):1353-1359.
MAURIZ E, CALLE A, MANCLS J J, et al.. Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides[J]. Sens. Actuators B:Chem., 2006, 118(1-2):399-407.
CHEN Y, MING H. Review of surface plasmon resonance and localized surface plasmon resonance sensor[J]. Photon. Sensor., 2012, 2(1):37-49.
李志全,孟晓云,朴瑞琦,等. 用表面等离子体共振原理检测湿度环境[J]. 光子学报, 2015, 44(6):0624001-1-5. LI Z Q, MENG X Y, PIAO R Q, et al.. Humidity detection based on surface plasmon resonance[J]. Acta Photon. Sinica, 2015, 44(6):0624001-1-5. (in Chinese)
王志斌,韩欢欢. 基于双电介质层的棱镜表面等离子共振传感的研究[J]. 光子学报, 2015, 44(10):1024001-1-5. WANG Z B, HAN H H. Study of prism surface plasmons resonance sensor based on double dielectric layers[J]. Acta Photon. Sinica, 2015, 44(10):1024001-1-5. (in Chinese)
张倩昀,曾捷,李继峰,等. 基于辅助电介质层的棱镜表面等离子体共振效应研究[J]. 物理学报, 2014, 63(3):034207-1-8. ZHANG Q J, ZENG J, LI J F, et al.. Study of prism surface plasmon resonance effect based on dielectric-aided layer[J]. Acta Phys. Sinica, 2014, 63(3):034207-1-8. (in Chinese)
张喆,柳倩,祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究[J]. 物理学报, 2013, 62(6):060703-1-6. ZHANG Z, LIU Q, QI Z M. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors[J]. Acta Phys. Sinica, 2013, 62(6):060703-1-6. (in Chinese)
LEE Y K, JANG D H, LEE K S, et al.. Enhancing performance of a miniaturized surface plasmon resonance sensor in the reflectance detection mode using a waveguide-coupled bimetallic chip[J]. Nanoscale Res. Lett., 2013, 8(1):344.
HONG C, KIM H, PARK S, et al.. Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering[J]. J. Eur. Ceram. Soc., 2010, 30(2):459-463.
DE STEFANO L, RENDINA I, MORETTI L, et al.. Smart optical sensors for chemical substances based on porous silicon technology[J]. Appl. Opt., 2004, 43(1):167-172.
陈颖,范卉青,王文跃,等. 多孔硅表面缺陷光子晶体的传感模型及特性[J]. 光学学报, 2015, 35(5):0523001-1-7. CHEN Y, FAN H Q, WANG W Y, et al.. Sensing model and performance of the surface defect photonic crystal with porous silicon[J]. Acta Opt. Sinica, 2015, 35(5):0523001-1-7. (in Chinese)
PLESSIS M D. Properties of porous silicon nano-explosive devices[J]. Sens. Actuators A:Phys., 2007, 135(2):666-674.
ZHANG P F, LIU L, HE Y H, et al.. One-dimensional angular surface plasmon resonance imaging based array thermometer[J]. Sens. Actuators B:Chem., 2015, 207:254-261.
ASTROVA E V, TOLMACHEV V A. Effective refractive index and composition of oxidized porous silicon films[J]. Mater. Sci. Eng. B, 2000, 69-70:142-148.
KOU F Y, TAMIR T. Range extension of surface plasmons by dielectric layers[J]. Opt. Lett., 1987, 12(5):367-369.
陈小龙,罗云瀚,徐梦云,等. 基于侧边抛磨光纤表面等离子体共振的折射率和温度传感研究[J]. 光学学报, 2014, 34(2):0206005-1-6. CHEN X L, LUO Y H, XU M L, et al.. Refractive index and temperature sensing based on surface plasmon resonance fabricated on a side-polished fiber[J]. Acta Opt. Sinica, 2014, 34(2):0206005-1-6. (in Chinese)
BAO M, LI G, JIANG D M, et al.. ZnO sensing film thickness effects on the sensitivity of surface plasmon resonance sensors with angular interrogation[J]. Mater. Sci. Eng. B, 2010, 171(1-3):155-158.