浏览全部资源
扫码关注微信
1. 火箭军工程大学 控制工程系,陕西 西安,710025
2. 火箭军工程大学 士官学院, 山东 青州,262500
Received:10 April 2016,
Revised:10 May 2016,
Published:05 September 2016
移动端阅览
赵爱罡, 王宏力, 杨小冈等. 利用二阶方向导数极大值检测红外小目标[J]. 发光学报, 2016,37(9): 1142-1151
ZHAO Ai-gang, WANG Hong-li, YANG Xiao-gang etc. Infrared Small-target Detection Using The Maximum of Second-order Directional Derivative[J]. Chinese Journal of Luminescence, 2016,37(9): 1142-1151
赵爱罡, 王宏力, 杨小冈等. 利用二阶方向导数极大值检测红外小目标[J]. 发光学报, 2016,37(9): 1142-1151 DOI: 10.3788/fgxb20163709.1142.
ZHAO Ai-gang, WANG Hong-li, YANG Xiao-gang etc. Infrared Small-target Detection Using The Maximum of Second-order Directional Derivative[J]. Chinese Journal of Luminescence, 2016,37(9): 1142-1151 DOI: 10.3788/fgxb20163709.1142.
为提高复杂环境下红外小目标的检测率,提出了基于二阶方向导数极大值的红外小目标检测算法。该算法首先对二阶方向导数的性质进行了分析,对极大值进行阈值翻转操作,将背景中的平坦成分和边缘成分剔除。接着,根据小面模型对背景进行预测,并以预测误差为权值进一步增强小目标区域。以上2个步骤的计算可通过4个卷积实现,加快了检测速度。最后,对少量候选小目标计算局部对比度,降低了虚警率。实验结果表明:该检测算法在6种复杂背景下平均信杂比增益为78.413 0,平均背景抑制因子为35.079 6,具有较强的鲁棒性和较高的检测率。
In order to improve the detection rate of infrared small-target in complex environment
a infrared small-target detection algorithm based on the maximum of second-order directional derivative was proposed. Firstly
the properties of second-order directional derivative were analyzed
meanwhile
the flat component and edge of background were removed by threshold and flip operations of the maximum. Then
the background was predicted based on facet model and further enhanced the small-target by prediction error as weight. The above two steps can be achieved by four convolutions and the detection speed was accelerated. At last
the local contrast of candidate small-targets was calculated to reduce the false alarm rate. The experimental results show that the average signal to clutter ratio gain is 78.413 0 and the average background suppression factor is 35.079 6 in 6 kinds of complex background. The proposed detection algorithm has stronger robustness and higher detection rate.
ZHANG F, LI C F, SHI L N. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Phys. Technol., 2005, 46(4):323-328.
GAO C Q, ZHANG T Q, LI Q. Small infrared target detection using sparse ring representation[J]. IEEE Aerosp. Electron. Syst. Mag., 2012, 27(3):21-30.
WANG C Y, QIN S Y. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis[J]. Infrared Phys. Technol., 2015, 69:123-135.
QI S X, MA J, TAO C, et al.. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J]. IEEE Geosci. Remote Sens. Lett., 2013, 10(3):495-499.
卢瑞涛,黄新生,徐婉莹. 基于Contourlet变换和Facet模型的红外小目标检测方法[J]. 红外与激光工程, 2013, 42(8):2281-2287. LU R T, HUANG X S, XU W Y. Method of infrared small target detection based on contourlet transform and facet model[J]. Infrared Laser Eng., 2013, 42(8):2281-2287. (in Chinese)
CHEN C L P, LI H, WEI Y T, et al.. A local contrast method for small infrared target detection[J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(1):574-581.
WANG X, LV G F, XU L Z. Infrared dim target detection based on visual attention[J]. Infrared Phys. Technol., 2012, 55(6):513-521.
BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognit., 2010, 43(6):2145-2156.
WANG G D, CHEN C Y, SHEN X B. Facet-based infrared small target detection method[J]. Electron. Lett., 2005, 41(22):1244-1246.
WANG P, TIAN J W, GAO C Q. Infrared small target detection using directional highpass filters based on LS-SVM[J]. Electron. Lett., 2009, 45(3):156-158.
HAN J H, MA Y, ZHOU B, et al.. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(12):2168-2172.
0
Views
133
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution