WEN Ying-xiu, LIU Tong-fang, ZHU Li-jie etc. Influence of Cesium Chloride Methanol Solution on The Conventional Organic Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2016,37(9): 1097-1102
WEN Ying-xiu, LIU Tong-fang, ZHU Li-jie etc. Influence of Cesium Chloride Methanol Solution on The Conventional Organic Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2016,37(9): 1097-1102 DOI: 10.3788/fgxb20163709.1097.
Influence of Cesium Chloride Methanol Solution on The Conventional Organic Polymer Solar Cells
The cesium chloride (CsCl) methanol solution was introduced into the conventional organic polymer solar cells as cathode buffer layer to improve its properties. The charge accumulation between the Al cathode and PTB7/PC
70
BM was analyzed through capacitance-voltage (
C
-
V
) measurement and the change of work function of Al was investigated by ultraviolet photoelectron spectroscopy (UPS). The results show that the short-circuit current (
J
sc
)
the open-circuit voltage (
V
oc
)
the fill factor and the power conversion efficiency (PCE) of the device with the CsCl methanol solution treatment have been improved. And the PCE reaches 6.36%
which has been improved 11% compared with the methanol treatment devices and 42.6% compared with the devices without any treatment. This one-step solution treatment can improve the device properties by reducing the charge accumulation and decreasing the work function of Al cathode which is benefit to electron collection.
关键词
Keywords
references
KIM K H, GONG S C, CHANG H J. Effects of anode buffer layers on the properties of organic solar cells[J]. Thin Solid Films, 2012, 521:69-72.
QU B, GAO Z, YANG H S, et al.. Calcium chloride electron injection/extraction layers in organic electronic devices[J]. Appl. Phys. Lett., 2014, 104(4):043305-1-4.
SCHMIDT M, LUGLI P, ULISSE G, et al.. Nanopatterning of P3HT:PCBM for organic solar cell realization[C]. Proceedings of The 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Rome, Italy, 2015:1366-1369.
GUPTA A. Organic solar cells and its characteristics[J]. J. Mater. Sci. Eng., 2015, 4:203.
姜璐璐,刘海瑞,李梦菲,等. 胆甾液晶应用于P3HT:PCBM聚合物光伏器件研究[J]. 液晶与显示, 2015, 30(4):596-601. JIANG L L, LIU H R, LI M F, et al.. Application of cholesteric liquid crystal in P3HT:PCBM photovoltaic device[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4):596-601. (in Chinese)
LIAO S H, JHUO H J, YEH P N, et al.. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer[J]. Sci. Rep., 2014, 4:6813.
LIU Y H, ZHAO J B, LI Z K, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014, 5:5293.
HE Z C, XIAO B, LIU F, et al.. Single-junction polymer solar cells with high efficiency and photovoltage[J]. Nat. Photon., 2015, 9(3):174-179.
GAO Z, QU B, XIAO L X, et al.. Sodium bromide electron-extraction layers for polymer bulk-heterojunction solar cells[J]. Appl. Phys. Lett., 2014, 104(10):103301-1-4.
LIN F Y, LIU X Y, LI Y T, et al.. Ultrathin metal fluoride interfacial layers for use in organic photovoltaic cells[J]. Adv. Funct. Mater., 2015, 25(44):6906-6912.
SUN K, XIA Y J, OUYANG J Y. Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene[J]. Solar Energy Mater. Solar Cells, 2012, 97:89-96.
ZHOU H Q, ZHANG Y, SEIFTER J, et al.. High-efficiency polymer solar cells enhanced by solvent treatment[J]. Adv. Mater., 2013, 25(11):1646-1652.
ZHENG Y F, LI S G, ZHENG D, et al.. Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells[J]. Org. Electron., 2014, 15(11):2647-2653.
MBULE P S, KIM T H, KIM B S, et al.. Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices[J]. Solar Energy Mater. Solar Cells, 2013, 112:6-12.
PARK J H, LEE T W, CHIN B D, et al.. Roles of interlayers in efficient organic photovoltaic devices[J]. Macromolec. Rap. Commun., 2010, 31(24):2095-2108.
郑建邦,吴广荣,屈俊荣,等. 不同厚度阴极修饰材料LiF对聚对苯乙炔MOPPV-SWNT-PbSe量子点复合材料太阳电池性能的影响[J]. 光子学报, 2015, 43(1):0116001-1-6. ZHENG J B, WU G R, QU J R, et al.. Effects of different thicknesses of modified cathode material LiF on the performance of poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-SWNT-PbSe composite solar cells[J]. Acta Photon. Sinica, 2015, 43(1):0116001-1-6. (in Chinese)
AHLSWEDE E, HANISCH J, POWALLA M. Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells[J]. Appl. Phys. Lett., 2007, 90(16):163504-1-3.
JIANG X X, XU H, YANG L G, et al.. Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells[J]. Solar Energy Mater. Solar Cells, 2009, 93(5):650-653.
LIAO H H, CHEN L M, XU Z, et al.. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer[J]. Appl. Phys. Lett., 2008, 92(17):173303-1-3.
LINDEMANN W R, XIAO T, WANG W J, et al.. An X-ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell[J]. Org. Electron., 2013, 14(12):3190-3194.
KANG S J, PARK D S, KIM S Y, et al.. Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer[J]. Appl. Phys. Lett., 2002, 81(14):2581-2583.
ZHANG K, HU Z C, DUAN C H, et al.. The effect of methanol treatment on the performance of polymer solar cells[J]. Nanotechnology, 2013, 24(48):484003.
LIU X F, WEN W, BAZAN G C. Post-deposition treatment of an arylated-carbazole conjugated polymer for solar cell fabrication[J]. Adv. Mater., 2012, 24(33):4505-4510.
LI H, TANG H W, LI L G, et al.. Solvent-soaking treatment induced morphology evolution in P3HT/PCBM composite films[J]. J. Mater. Chem., 2011, 21(18):6563-6568.
AN T K, PARK S M, NAM S, et al.. Thin film morphology control via a mixed solvent system for high-performance organic thin film transistors[J]. Sci. Adv. Mater., 2013, 5(9):1323-1327.
WANG Q, ZHOU Y, ZHENG H, et al.. Modifying organic/metal interface via solvent treatment to improve electron injection in organic light emitting diodes[J]. Org. Electron., 2011, 12(11):1858-1863.
ZHANG Z G, LI H, QI B Y, et al.. Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells[J]. J. Mater. Chem. A, 2013, 1(34):9624-9629.
JIA T, HAN J X, ZHOU W L, et al.. Application of a water-soluble metallophthalocyanine derivative as a cathode interlayer for the polymer solar cells[J]. Solar Energy Mater. Solar Cells, 2015, 141:93-100.
CHO S, KIM K D, HEO J, et al.. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells[J]. Sci. Rep., 2014, 4:4306.
HSIAO Y C, ZANG H D, IVANOV I, et al.. Dielectric interface effects on surface charge accumulation and collection towards high-efficiency organic solar cells[J]. J. Appl. Phys., 2014, 115(15):154506.
ZANG H D, HSIAO Y C, HU B. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis[J]. Phys. Chem. Chem. Phys., 2014, 16(10):4971-4976.